Rofo 2014; 186(10): 945-950
DOI: 10.1055/s-0034-1366232
Interventional Radiology
© Georg Thieme Verlag KG Stuttgart · New York

Forms of Energy Delivery during Cryo-cooled Radiofrequency Ablation for Optimization of the Ablation Result

Variationen der Energieabgabe während kryo-gekühlter RF-Ablation zur Optimierung des Ablationsergebnisses
R. Hoffmann
1   Diagnostic and Interventional Radiology, University Hospital Tübingen
,
J. Bustamante
1   Diagnostic and Interventional Radiology, University Hospital Tübingen
,
C. Pitsaer
2   ERBE Elektromedizin GmbH, ERBE, Derendingen
,
M. Voigtländer
2   ERBE Elektromedizin GmbH, ERBE, Derendingen
,
M. D. Enderle
2   ERBE Elektromedizin GmbH, ERBE, Derendingen
,
C. D. Claussen
1   Diagnostic and Interventional Radiology, University Hospital Tübingen
,
S. Clasen
1   Diagnostic and Interventional Radiology, University Hospital Tübingen
,
H. Rempp
1   Diagnostic and Interventional Radiology, University Hospital Tübingen
› Author Affiliations
Further Information

Publication History

03 January 2014

17 February 2014

Publication Date:
01 April 2014 (online)

Abstract

Purpose: Energy transfer from radiofrequency (RF) applicator to tissue is both precondition and limiting factor. The purpose of this ex vivo study was to examine the influence of form of energy delivery on ablation result during RF ablation with cryo-cooled applicators.

Materials and Methods: One hundred eight ablations were performed in ex vivo bovine liver under continuous energy delivery (A), pulsed energy delivery with reduced current during ablation pause (B) and impedance-dependent energy delivery. Maximum ablation time was 20 min. Early termination of ablation in case of loss of conductivity. Optimal ablation parameters were assessed. Short axis diameter of the ablation zone and ablation duration were determined. Ablation results under mode A, B and C were compared with analysis of variance and Tukey-Kramer HSD test. Influence of ablation duration on short axis diameter was evaluated with regression analysis.

Results: Significantly largest short axis diameter (51.1 mm ± SD 2.3; p = 0.01) was reached with impedance-dependent energy delivery (pulsed: 46.1 mm ± SD 5.6; continuous: 44.4 mm ± SD 4.1). Significantly longest ablation duration (1061.6 s ± SD 42.4; p = 0.01) was reached with impedance-dependent energy delivery (pulsed: 815.7 s ± 41.3; continuous: 715.3 s ± SD 82.2). Linear correlation between ablation duration and short axis diameter was calculated (R = 0.7).

Conclusion: Modification of energy delivery during RF ablation with cryo-cooled applicators improves energy transfer to tissue and enables larger ablation zones.

Key Points:

• Impedance-dependent energy delivery prevents early termination in kryo-based RF-ablation,

• Impedance-dependent energy delivery enables larger ablation zones than continuous energy delivery,

• Reduced current during ablation pause does not improve ablation results.

Citation Format:

• Hoffmann R, Bustamante J, Pitsaer C et al. Forms of Energy Delivery during Cryo-cooled Radiofrequency Ablation for Optimization of the Ablation Result. Fortschr Röntgenstr 2014; 186: 945 – 950

Zusammenfassung

Ziel: Der Energietransfer von Radiofrequenzsonden (RF-Sonden) auf das Zielgewebe ist Voraussetzung und limitierender Faktor der RF-Ablation. Ziel dieser Ex-vivo-Studie ist die Untersuchung des Einflusses der Form der Energieabgabe auf das Ablationsergebnis während RF-Ablation mit kryogekühlten Sonden.

Material und Methoden: Insgesamt 108 Ablationen wurden unter kontinuierlicher Energieabgabe (A), gepulster Energieabgabe mit reduzierten Ablationsströmen während Ablationspausen (B) und impedanzabhängiger (C) Energieabgabe an ex vivo Rinderlebern durchgeführt. Die Ablationszeit betrug maximal 20 min. Ggf. vorzeitiger Abbruch der Ablation bei Verlust der Gewebeleitfähigkeit. Optimale Ablationsparameter wurden ermittelt. Der Kurzachsendurchmesser der Ablationszone und die erreichte Ablationszeit wurden ermittelt. Der Vergleich der unter Ablationsmodi A, B und C erreichten Ergebnisse erfolgte mittels Varianzanalyse und Tukey-Kramer HSD-Test. Der Einfluss der Ablationszeit auf den Kurzachsendurchmesser wurde mit Regressionsanalyse untersucht.

Ergebnisse: Der signifikant größte Kurzachsendurchmesser (51,1 mm ± SD 2,3; p = 0,01) wurde unter impedanzabhängiger Energieabgabe erreicht (gepulst: 46,1 mm ± SD 5,6; kontinuierlich: 44,4 mm ± SD 4,1). Die signifikant längste mittlere Ablationszeit (1061,6 s ± SD 42,4; p = 0,01) wurde unter impedanzabhängiger Energieabgabe erreicht (gepulst: 815,7 s ± 41,3; kontinuierlich: 715,3 s ± SD 82,2). Eine lineare Korrelation zwischen Ablationszeit und Kurzachsendurchmesser wurde ermittelt (R = 0,70).

Schlussfolgerung: Durch Modifikation der Energieabgabe während RF-Ablation mit kryogekühlten Sonden lassen sich die Energieübertragung auf das Gewebe verbessern und größere Ablationszonen erzielen.

Deutscher Artikel/German Article

 
  • References

  • 1 Lencioni R, Cioni D, Crocetti L et al. Early-stage hepatocellular carcinoma in patients with cirrhosis: long-term results of percutaneous image-guided radiofrequency ablation. Radiology 2005; 234: 961-967
  • 2 Bale R, Widmann G, Schullian P et al. Percutaneous stereotactic radiofrequency ablation of colorectal liver metastases. Eur Radiol 2012; 22: 930-937
  • 3 Chen MS, Li JQ, Zheng Y et al. A prospective randomized trial comparing percutaneous local ablative therapy and partial hepatectomy for small hepatocellular carcinoma. Ann Surg 2006; 243: 321-328
  • 4 Gillams A, Khan Z, Osborn P et al. Survival after radiofrequency ablation in 122 patients with inoperable colorectal lung metastases. Cardiovasc Intervent Radiol 2013; 36: 724-730
  • 5 Mahnken AH, Gunther RW, Tacke J. Radiofrequency ablation of renal tumors. Eur Radiol 2004; 14: 1449-1455
  • 6 Gebauer B, Collettini F, Bruger C et al. Radiofrequency ablation of osteoid osteomas: analgesia and patient satisfaction in long-term follow-up. Fortschr Röntgenstr 2013; 184: 959-966
  • 7 Solbiati L, Livraghi T, Goldberg SN et al. Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients. Radiology 2001; 221: 159-166
  • 8 Berber E, Tsinberg M, Tellioglu G et al. Resection versus laparoscopic radiofrequency thermal ablation of solitary colorectal liver metastasis. J Gastrointest Surg 2008; 12: 1967-1972
  • 9 Gillams AR, Lees WR. Five-year survival in 309 patients with colorectal liver metastases treated with radiofrequency ablation. Eur Radiol 2009; 19: 1206-1213
  • 10 Lencioni RA, Allgaier HP, Cioni D et al. Small hepatocellular carcinoma in cirrhosis: randomized comparison of radio-frequency thermal ablation versus percutaneous ethanol injection. Radiology 2003; 228: 235-240
  • 11 Goldberg SN, Gazelle GS, Dawson SL et al. Tissue ablation with radiofrequency using multiprobe arrays. Acad Radiol 1995; 2: 670-674
  • 12 Goldberg SN, Solbiati L, Hahn PF et al. Large-volume tissue ablation with radio frequency by using a clustered, internally cooled electrode technique: laboratory and clinical experience in liver metastases. Radiology 1998; 209: 371-379
  • 13 Lorentzen T. The loop electrode: in vitro evaluation of a device for ultrasound-guided interstitial tissue ablation using radiofrequency electrosurgery. Acad Radiol 1996; 3: 219-224
  • 14 de Baere T, Denys A, Wood BJ et al. Radiofrequency liver ablation: experimental comparative study of water-cooled versus expandable systems. Am J Roentgenol American journal of roentgenology 2001; 176: 187-192
  • 15 Rempp H, Voigtlander M, Clasen S et al. Increased ablation zones using a cryo-based internally cooled bipolar RF applicator in ex vivo bovine liver. Invest Radiol 2009; 44: 763-768
  • 16 Rempp H, Scharpf M, Voigtlaender M et al. Sustained growth of the ex vivo ablation zones' critical short axis using gas-cooled radiofrequency applicators. Cardiovasc Intervent Radiol 2011; 34: 149-155
  • 17 Schmidt D, Trubenbach J, Konig CW et al. Radiofrequency ablation ex vivo: comparison of the efficacy of impedance control mode versus manual control mode by using an internally cooled clustered electrode. Fortschr Röntgenstr 2003; 175: 967-972
  • 18 Goldberg SN, Stein MC, Gazelle GS et al. Percutaneous radiofrequency tissue ablation: optimization of pulsed-radiofrequency technique to increase coagulation necrosis. J Vasc Interv Radiol 1999; 10: 907-916
  • 19 Goldberg SN, Grassi CJ, Cardella JF et al. Image-guided tumor ablation: standardization of terminology and reporting criteria. Radiology 2005; 235: 728-739
  • 20 Bruners P, Schmitz-Rode T, Gunther RW et al. Multipolar hepatic radiofrequency ablation using up to six applicators: preliminary results. Fortschr Röntgenstr 2008; 180: 216-222
  • 21 Clasen S, Geng A, Herberts T et al. Internally cooled bipolar radiofrequency ablation: is a lower power output more effective?. Fortschr Röntgenstr 2007; 179: 282-288
  • 22 Wiggermann P, Jung EM, Stroszczynski C. Radiofrequency ablation – is a technique finished?. Radiologe 2012; 52: 9-14
  • 23 Rempp H, Voigtlander M, Schenk M et al. Internally gas-cooled radiofrequency applicators as an alternative to conventional radiofrequency and microwave ablation devices: an in vivo comparison. Europ J Radiol 2013; 82: 350-355
  • 24 Bitsch RG, Dux M, Helmberger T et al. Effects of vascular perfusion on coagulation size in radiofrequency ablation of ex vivo perfused bovine livers. Invest Radiol 2006; 41: 422-427
  • 25 Frericks BB, Ritz JP, Albrecht T et al. Influence of intrahepatic vessels on volume and shape of percutaneous thermal ablation zones: in vivo evaluation in a porcine model. Invest Radiol 2008; 43: 211-218