Horm Metab Res 2014; 46(07): 499-504
DOI: 10.1055/s-0034-1371855
Endocrine Care
© Georg Thieme Verlag KG Stuttgart · New York

Insulin Polymers in the Plasma of Obese Subjects Are Associated with Elevated Levels of Carbonyl Groups and Are Decreased by (–)-Epicatechin

M. J. Rincón Víquez
1   Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Casco de Santo Tomas, México
,
J. R. García-Sánchez
1   Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Casco de Santo Tomas, México
,
M. A. Tapia González
2   Unidad Medica de Alta Especialidad Dr. Antonio Fraga Mouret, Hospital de Especialidades, Centro Médico Nacional “La Raza”, Depto. de Endocrinología Instituto Mexicano del Seguro Social, Ciudad de México, México
,
L. Gutiérrez López
1   Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Casco de Santo Tomas, México
,
G. M. Ceballos-Reyes
1   Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Casco de Santo Tomas, México
,
I. M. Olivares-Corichi
1   Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Casco de Santo Tomas, México
› Author Affiliations
Further Information

Publication History

received 21 October 2013

accepted 26 February 2014

Publication Date:
08 May 2014 (online)

Abstract

We investigated whether oxidative damage and insulin polymerization at a systemic level are associated with the insulin resistance (IR) observed in obese subjects. We evaluated 3 groups (n=16/each) divided according to body mass index (BMI): Normal weight (NW) with a BMI of 18.5–24.9, obese 1 (O1) 30–34.9, and obese 3 (O3)>40 kg/m2. IR and oxidative damage status of the groups were established by HOMA value and the analysis of biomarkers of oxidative stress in plasma. Insulin polymers in systemic circulation were detected using an antibody specific coupled to magnetic beads, which were incubated in plasma from the study groups. Analysis of magnetic beads by electrophoresis on polyacrylamide gel and silver stain assessed the presence of insulin polymers. The inhibition of polymers formation was studied by the presence of (–)-epicatechin. We demonstrated that O1 and O3 subjects with IR showed higher oxidative damage to their plasma lipids and proteins than NW subjects. This oxidative damage was associated with the presence of insulin polymers in the plasma of the O1 and O3 subjects. This polymer showed a high concentration of carbonyl groups by Western blot, suggesting the participation of oxidative damage in the generation of the polymer. The antioxidant (–)-epicatechin decreased the formation of the insulin polymer, indicating that the prevention of oxidative damage can inhibit insulin polymerization. Our study revealed an association between the presence of carbonyl stress, IR, and insulin polymer formation in obese subjects. This study also demonstrates that the antioxidant (–)-epicatechin inhibits insulin polymerization.

 
  • References

  • 1 World Health Organization. Fact sheet: obesity and overweight. Available at http://www.who.int/mediacentre/factsheets/fs311/en/print.html
  • 2 Hall JE, da Silva AA, do Carmo JM, Dubinion J, Hamza S, Munusamy S, Smith G, Stec DE. Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J Biol Chem 2010; 285: 17271-17276
  • 3 Bamba V, Rader DJ. Obesity and atherogenic dyslipidemia. Gastroenterology 2007; 132: 2181-2190
  • 4 Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 2008; 9: 367-377
  • 5 Lavie CJ, Milani RV, Ventura HO. Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J Am Coll Cardiol 2009; 53: 1925-1932
  • 6 Winter Y, Rohrmann S, Linseisen J, Lanczik O, Ringleb PA, Hebebrand J, Back T. Contribution of obesity and abdominal fat mass to risk of stroke and transient ischemic attacks. Stroke 2008; 39: 3145-3151
  • 7 Schäffler A, Müller-Ladner U, Schölmerich J, Büchler C. Role of adipose tissue as an inflammatory organ in human diseases. Endocr Rev 2006; 27: 449-467
  • 8 Heilbronn LK, Campbell LV. Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Curr Pharm Des 2008; 14: 1225-1230
  • 9 Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 2006; 116: 1784-1792
  • 10 Ye J. Mechanisms of insulin resistance in obesity. Front Med 2013; 7: 14-24
  • 11 Choi K, Kim YB. Molecular mechanism of insulin resistance in obesity and type 2 diabetes. Korean J Intern Med 2010; 25: 119-129
  • 12 Bryan S, Baregzay B, Spicer D, Singal PK, Khaper N. Redox-inflammatory synergy in the metabolic syndrome. Can J Physiol Pharmacol 2013; 91: 22-30
  • 13 Olivares-Corichi IM, Viquez MJ, Gutierrez-Lopez L, Ceballos-Reyes GM, Garcia-Sanchez JR. Oxidative stress present in the blood from obese patients modifies the structure and function of insulin. Horm Metab Res 2011; 43: 748-753
  • 14 Uzun H, Konukoglu D, Gelisgen R, Zengin K, Taskin M. Plasma protein carbonyl and thiol stress before and after laparoscopic gastric banding in morbidly obese patients. Obes Surg 2007; 17: 1367-1373
  • 15 Yagi K. Sample procedure for specific assay of lipid hydroperoxides in serum or plasma. Methods Mol Biol 1998; 108: 107-110
  • 16 Gérard-Monnier D, Erdelmeier I, Régnard K, Moze-Henry N, Yadan JC, Chaudière J. Reactions of 1-Methyl-2-phenylindole with malondialdhehyde and 4 hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation. Chem Res Toxicol 1998; 11: 1176-1183
  • 17 Gieseg SP, Simpson JA, Charlton TS, Duncan MW, Dean RT. Protein-bound 3,4 dihydroxyphenylalanine is a major reductant formed during hydroxyl radical damage to proteins. Biochemistry 1993; 32: 4780-4786
  • 18 Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 1994; 233: 357-363
  • 19 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265-275
  • 20 Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 2003; 329: 23-38
  • 21 Ellman GL. Tissue sulffhydryl groups. Arch Biochem Biophys 1959; 82: 70-77
  • 22 Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium-deficient rat liver 1976. Biochem Biophys Res Commun. 2012 425. 503-509
  • 23 Sasse J, Gallagher SR. Detection of proteins. In: Ausubel FM. (ed.). Short Protocols in Molecular Biology. New York: Wiley; 1992: 1029-1030
  • 24 Lane D. Immunoblotting. In: Harlowe E. (ed.). Antibodies, A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press; 1990: 471-510
  • 25 Holt RR, Lazarus SA, Sullards MC, Zhu QY, Schramm DD, Hammerstone JF, Fraga CG, Schmitz HH, Keen CL. Procyanidin dimer B2 [epicatechin-(4beta-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Am J Clin Nutr 2002; 76: 798-804
  • 26 Choi K, Kim YB. Molecular mechanism of insulin resistance in obesity and type 2 diabetes. Korean J Intern Med 2010; 25: 119-129
  • 27 Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction?. Diabetes 2003; 52: 1-8
  • 28 Ceriello A. Oxidative stress and glycemic regulation. Metabolism 2000; 49 (Suppl. 01) 27-29
  • 29 Thornalley PJ. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems – role in ageing and disease. Drug Metabol Drug Interact 2008; 23: 125-150
  • 30 Thornalley PJ. Glycation, receptor-mediated cell activation and vascular complications of diabetes. Diab Vasc Dis Res 2004; 1: 21-22
  • 31 Sarkar P, Kar K, Mondal MC, Chakraborty I, Kar M. Elevated level of carbonyl compounds correlates with insulin resistance in type 2 diabetes. Ann Acad Med Singapore 2010; 39: 909-904
  • 32 Riboulet-Chavey A, Pierron A, Durand I, Murdaca J, Giudicelli J, Van Obberghen E. Methylglyoxal impairs the insulin signaling pathways independently of the formation of intracellular reactive oxygen species. Diabetes 2006; 55: 1289-1299
  • 33 Pullen RA, Lindsay DG, Wood SP, Tickle IJ, Blundell TL, Wollmer A. Receptor-binding region of insulin. Nature 1976; 259: 369-373
  • 34 Gammeltoft S. Insulin receptors: binding kinetics and structure-function relationship of insulin. Physiol Rev 1984; 64: 1321-1378
  • 35 Hanhineva K, Törrönen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkänen H, Poutanen K. Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 2010; 1365-1402
  • 36 Wedick NM, Pan A, Cassidy A, Rimm EB, Sampson L, Rosner B, Willett W, Hu FB, Sun Q, van Dam RM. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am J Clin Nutr 2012; 95: 925-933
  • 37 Crozier A, Jaganath IB, Clifford MN. Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 2009; 26: 1001-1043
  • 38 Yan J, Zhao Y, Suo S, Liu Y, Zhao B. Green tea catechins ameliorate adipose insulin resistance by improving oxidative stress. Free Radic Biol Med 2012; 52: 1648-1657
  • 39 Curtis PJ, Sampson M, Potter J, Dhatariya K, Kroon PA, Cassidy A. Chronic ingestion of flavan-3-ols and isoflavones improves insulin sensitivity and lipoprotein status and attenuates estimated 10-year CVD risk in medicated postmenopausal women with type 2 diabetes: a 1-year, double-blind, randomized, controlled trial. Diabetes Care 2012; 35: 226-232