Semin intervent Radiol 2014; 31(02): 157-166
DOI: 10.1055/s-0034-1373790
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Renal Ablation Update

Vishal Khiatani
1   Coastal Radiology Associates, Department of Radiology, Carolina East Medical Center, New Bern, North Carolina
,
Robert G. Dixon
2   Department of Radiology, University of North Carolina, Chapel Hill, North Carolina
› Author Affiliations
Further Information

Publication History

Publication Date:
21 May 2014 (online)

Abstract

Thermal ablative technologies have evolved considerably in the recent past and are now an important component of current clinical guidelines for the treatment of small renal masses. Both radiofrequency ablation and cryoablation have intermediate-term oncologic control that rivals surgical options, with favorable complication profiles. Studies comparing cryoablation and radiofrequency ablation show no significant difference in oncologic control or complication profile between the two modalities. Early data from small series with microwave ablation have shown similar promising results. Newer technologies including irreversible electroporation and high-intensity–focused ultrasound have theoretical advantages, but will require further research before becoming a routine part of the ablation armamentarium. The purpose of this review article is to discuss the current ablative technologies available, briefly review their mechanisms of action, discuss technical aspects of each, and provide current data supporting their use.

 
  • References

  • 1 American Cancer Society. 2014. What Are the Key Statistics about Kidney Cancer?. Available at: http://www.cancer.org/cancer/kidneycancer/detailedguide/kidney-cancer-adult-key-statistics . Accessed January 27, 2014
  • 2 Rojas I, Rodríguez T, Pierotic M, Le Cerf P. Histological evaluation of cryosurgery in high grade intraepithelial neoplasia (CIN-III)] of the uterine cervix [in Spanish]. Rev Chil Obstet Ginecol 1993; 58 (3) 200-204 , discussion 204–205
  • 3 Homma Y, Kawabe K, Kitamura T , et al. Increased incidental detection and reduced mortality in renal cancer—recent retrospective analysis at eight institutions. Int J Urol 1995; 2 (2) 77-80
  • 4 Woldrich JM, Palazzi K, Stroup SP , et al. Trends in the surgical management of localized renal masses: thermal ablation, partial and radical nephrectomy in the USA, 1998-2008. BJU Int 2013; 111 (8) 1261-1268
  • 5 Ljungberg B, Campbell SC, Choi HY , et al. The epidemiology of renal cell carcinoma. Eur Urol 2011; 60 (4) 615-621
  • 6 Campbell SC, Novick AC, Belldegrun A , et al. Guideline for management of the clinical T1 renal mass. J Urol 2009; 182 (4) 1271-1279
  • 7 Weight CJ, Larson BT, Fergany AF , et al. Nephrectomy induced chronic renal insufficiency is associated with increased risk of cardiovascular death and death from any cause in patients with localized cT1b renal masses. J Urol 2010; 183 (4) 1317-1323
  • 8 Stephenson AJ, Hakimi AA, Snyder ME, Russo P. Complications of radical and partial nephrectomy in a large contemporary cohort. J Urol 2004; 171 (1) 130-134
  • 9 Weber SM, Lee Jr FT. Cryoablation: history, mechanism of action and guidance modalities. In: vanSonnenberg E, McMullen WN, Solbiati L, , eds. Tumor Ablation. New York: Springer Science + Business Media; 2005: 250-266
  • 10 Ortved WE, O'Kelly FM, Todd IA, Maxwell JB, Sutton MR. Cryosurgical prostatectomy: a report of 100 cases. Br J Urol 1967; 39 (5) 577-583
  • 11 Permpongkosol S, Link RE, Kavoussi LR, Solomon SB. Percutaneous computerized tomography guided cryoablation for localized renal cell carcinoma: factors influencing success. J Urol 2006; 176 (5) 1963-1968 , discussion 1968
  • 12 Uchida M, Imaide Y, Sugimoto K, Uehara H, Watanabe H. Percutaneous cryosurgery for renal tumours. Br J Urol 1995; 75 (2) 132-136 , discussion 136–137
  • 13 Torre D. Alternate cryogens for cryosurgery. J Dermatol Surg 1975; 1 (2) 56-58
  • 14 Hewitt PM, Zhao J, Akhter J, Morris DL. A comparative laboratory study of liquid nitrogen and argon gas cryosurgery systems. Cryobiology 1997; 35 (4) 303-308
  • 15 Theodorescu D. Cancer cryotherapy: evolution and biology. Rev Urol 2004; 6 (Suppl. 04) S9-S19
  • 16 Gage AA, Baust JM, Baust JG. Experimental cryosurgery investigations in vivo. Cryobiology 2009; 59 (3) 229-243
  • 17 Gage AA, Baust J. Mechanisms of tissue injury in cryosurgery. Cryobiology 1998; 37 (3) 171-186
  • 18 Hoffmann NE, Bischof JC. The cryobiology of cryosurgical injury. Urology 2002; 60 (2, Suppl 1) 40-49
  • 19 Lagerveld BW. Cryosurgical induced injury of human cancerous tissues—How it works?. Br J Med Surg Urol 2012; 5S: S24-S27
  • 20 Ahmed M, Brace CL, Lee Jr FT, Goldberg SN. Principles of and advances in percutaneous ablation. Radiology 2011; 258 (2) 351-369
  • 21 Georgiades C, Rodriguez R, Azene E , et al. Determination of the nonlethal margin inside the visible “ice-ball” during percutaneous cryoablation of renal tissue. Cardiovasc Intervent Radiol 2013; 36 (3) 783-790
  • 22 Uppot RN, Silverman SG, Zagoria RJ, Tuncali K, Childs DD, Gervais DA. Imaging-guided percutaneous ablation of renal cell carcinoma: a primer of how we do it. AJR Am J Roentgenol 2009; 192 (6) 1558-1570
  • 23 Woolley ML, Schulsinger DA, Durand DB, Zeltser IS, Waltzer WC. Effect of freezing parameters (freeze cycle and thaw process) on tissue destruction following renal cryoablation. J Endourol 2002; 16 (7) 519-522
  • 24 Goyal J, Verma P, Sidana A, Georgiades CS, Rodriguez R. Single-center comparative oncologic outcomes of surgical and percutaneous cryoablation for treatment of renal tumors. J Endourol 2012; 26 (11) 1413-1419
  • 25 Mues AC, Okhunov Z, Haramis G, D'Agostino H, Shingleton BW, Landman J. Comparison of percutaneous and laparoscopic renal cryoablation for small (<3.0 cm) renal masses. J Endourol 2010; 24 (7) 1097-1100
  • 26 Derweesh IH, Malcolm JB, Diblasio CJ , et al. Single center comparison of laparoscopic cryoablation and CT-guided percutaneous cryoablation for renal tumors. J Endourol 2008; 22 (11) 2461-2467
  • 27 Hinshaw JL, Shadid AM, Nakada SY, Hedican SP, Winter III TC, Lee Jr FT. Comparison of percutaneous and laparoscopic cryoablation for the treatment of solid renal masses. AJR Am J Roentgenol 2008; 191 (4) 1159-1168
  • 28 Hui GC, Tuncali K, Tatli S, Morrison PR, Silverman SG. Comparison of percutaneous and surgical approaches to renal tumor ablation: metaanalysis of effectiveness and complication rates. J Vasc Interv Radiol 2008; 19 (9) 1311-1320
  • 29 Bandi G, Hedican S, Moon T, Lee FT, Nakada SY. Comparison of postoperative pain, convalescence, and patient satisfaction after laparoscopic and percutaneous ablation of small renal masses. J Endourol 2008; 22 (5) 963-967
  • 30 Sung GT, Gill IS, Hsu TH , et al. Effect of intentional cryo-injury to the renal collecting system. J Urol 2003; 170 (2, Pt 1) 619-622
  • 31 Rosenberg MD, Kim CY, Tsivian M , et al. Percutaneous cryoablation of renal lesions with radiographic ice ball involvement of the renal sinus: analysis of hemorrhagic and collecting system complications. AJR Am J Roentgenol 2011; 196 (4) 935-939
  • 32 Littrup PJ, Ahmed A, Aoun HD , et al. CT-guided percutaneous cryotherapy of renal masses. J Vasc Interv Radiol 2007; 18 (3) 383-392
  • 33 Bodily KD, Atwell TD, Mandrekar JN , et al. Hydrodisplacement in the percutaneous cryoablation of 50 renal tumors. AJR Am J Roentgenol 2010; 194 (3) 779-783
  • 34 Froemming A, Atwell T, Farrell M, Callstrom M, Leibovich B, Charboneau W. Probe retraction during renal tumor cryoablation: a technique to minimize direct ureteral injury. J Vasc Interv Radiol 2010; 21 (1) 148-151
  • 35 Long CJ, Canter DJ, Smaldone MC , et al. Role of tumor location in selecting patients for percutaneous versus surgical cryoablation of renal masses. Can J Urol 2012; 19 (5) 6417-6422
  • 36 Breen DJ, Bryant TJ, Abbas A , et al. Percutaneous cryoablation of renal tumours: outcomes from 171 tumours in 147 patients. BJU Int 2013; 112 (6) 758-765
  • 37 Ahrar K, Ahrar JU, Javadi S , et al. Real-time magnetic resonance imaging-guided cryoablation of small renal tumors at 1.5 T. Invest Radiol 2013; 48 (6) 437-444
  • 38 Silverman SG, Tuncali K, vanSonnenberg E , et al. Renal tumors: MR imaging-guided percutaneous cryotherapy—initial experience in 23 patients. Radiology 2005; 236 (2) 716-724
  • 39 Khan F, Sriprasad S, Keeley Jr FX. Cryosurgical ablation for small renal masses, current status and future prospects. Br J Med Surg Urol 2012; 5S: S28-S34
  • 40 Rodriguez R, Cizman Z, Hong K, Koliatsos A, Georgiades C. Prospective analysis of the safety and efficacy of percutaneous cryoablation for pT1NxMx biopsy-proven renal cell carcinoma. Cardiovasc Intervent Radiol 2011; 34 (3) 573-578
  • 41 Kunkle DA, Uzzo RG. Cryoablation or radiofrequency ablation of the small renal mass : a meta-analysis. Cancer 2008; 113 (10) 2671-2680
  • 42 Chalasani V, Martinez CH, Lim D, Abdelhady M, Chin JL. Surgical cryoablation as an option for small renal masses in patients who are not ideal partial nephrectomy candidates: intermediate-term outcomes. Can Urol Assoc J 2010; 4 (6) 399-402
  • 43 Georgiades CS, Rodriguez R. Efficacy and safety of percutaneous cryoablation for stage 1a/b renal cell carcinoma: results of a prospective, single-arm, 5-year study. Cardiovasc Intervent Radiol 2014;
  • 44 Johnson DB, Solomon SB, Su LM , et al. Defining the complications of cryoablation and radio frequency ablation of small renal tumors: a multi-institutional review. J Urol 2004; 172 (3) 874-877
  • 45 Atwell TD, Carter RE, Schmit GD , et al. Complications following 573 percutaneous renal radiofrequency and cryoablation procedures. J Vasc Interv Radiol 2012; 23 (1) 48-54
  • 46 Massarweh NN, Cosgriff N, Slakey DP. Electrosurgery: history, principles, and current and future uses. J Am Coll Surg 2006; 202 (3) 520-530
  • 47 O'Connor JL, Bloom DA, William T. Bovie and electrosurgery. Surgery 1996; 119 (4) 390-396
  • 48 McGahan JP, Browning PD, Brock JM, Tesluk H. Hepatic ablation using radiofrequency electrocautery. Invest Radiol 1990; 25 (3) 267-270
  • 49 Rossi S, Fornari F, Pathies C, Buscarini L. Thermal lesions induced by 480 KHz localized current field in guinea pig and pig liver. Tumori 1990; 76 (1) 54-57
  • 50 Zlotta AR, Wildschutz T, Raviv G , et al. Radiofrequency interstitial tumor ablation (RITA) is a possible new modality for treatment of renal cancer: ex vivo and in vivo experience. J Endourol 1997; 11 (4) 251-258
  • 51 Lui KW, Gervais DA, Arellano RA, Mueller PR. Radiofrequency ablation of renal cell carcinoma. Clin Radiol 2003; 58 (12) 905-913
  • 52 Hsu TH, Fidler ME, Gill IS. Radiofrequency ablation of the kidney: acute and chronic histology in porcine model. Urology 2000; 56 (5) 872-875
  • 53 Zagoria RJ. Imaging-guided radiofrequency ablation of renal masses. Radiographics 2004; 24 (Suppl. 01) S59-S71
  • 54 Salas N, Castle SM, Leveillee RJ. Radiofrequency ablation for treatment of renal tumors: technological principles and outcomes. Expert Rev Med Devices 2011; 8 (6) 695-707
  • 55 McGhana JP, Dodd III GD. Radiofrequency ablation of the liver: current status. AJR Am J Roentgenol 2001; 176 (1) 3-16
  • 56 Takaki H, Yamakado K, Soga N , et al. Midterm results of radiofrequency ablation versus nephrectomy for T1a renal cell carcinoma. Jpn J Radiol 2010; 28 (6) 460-468
  • 57 Olweny EO, Park SK, Tan YK, Best SL, Trimmer C, Cadeddu JA. Radiofrequency ablation versus partial nephrectomy in patients with solitary clinical T1a renal cell carcinoma: comparable oncologic outcomes at a minimum of 5 years of follow-up. Eur Urol 2012; 61 (6) 1156-1161
  • 58 Gupta A, Raman JD, Leveillee RJ , et al. General anesthesia and contrast-enhanced computed tomography to optimize renal percutaneous radiofrequency ablation: multi-institutional intermediate-term results. J Endourol 2009; 23 (7) 1099-1105
  • 59 Zagoria RJ, Pettus JA, Rogers M, Werle DM, Childs D, Leyendecker JR. Long-term outcomes after percutaneous radiofrequency ablation for renal cell carcinoma. Urology 2011; 77 (6) 1393-1397
  • 60 Gervais DA, McGovern FJ, Arellano RS, McDougal WS, Mueller PR. Radiofrequency ablation of renal cell carcinoma: part 1, Indications, results, and role in patient management over a 6-year period and ablation of 100 tumors. AJR Am J Roentgenol 2005; 185 (1) 64-71
  • 61 Gervais DA, Arellano RS, Mueller P. Percutaneous ablation of kidney tumors in nonsurgical candidates. Oncology (Williston Park) 2005; 19 (11) (Suppl. 04) 6-11
  • 62 Lee SJ, Choyke LT, Locklin JK, Wood BJ. Use of hydrodissection to prevent nerve and muscular damage during radiofrequency ablation of kidney tumors. J Vasc Interv Radiol 2006; 17 (12) 1967-1969
  • 63 Kam AW, Littrup PJ, Walther MM, Hvizda J, Wood BJ. Thermal protection during percutaneous thermal ablation of renal cell carcinoma. J Vasc Interv Radiol 2004; 15 (7) 753-758
  • 64 Hegg RM, Schmit GD, Kurup AN, Weisbrod AJ, Boorjian SA, Atwell TD. Ultrasound-guided transhepatic radiofrequency ablation of renal tumors: a safe and effective approach. Cardiovasc Intervent Radiol 2014; 37 (2) 508-512
  • 65 Tracy CR, Raman JD, Donnally C, Trimmer CK, Cadeddu JA. Durable oncologic outcomes after radiofrequency ablation: experience from treating 243 small renal masses over 7.5 years. Cancer 2010; 116 (13) 3135-3142
  • 66 Ma Y, Bedir S, Cadeddu JA, Gahan JC. Long-term outcomes in healthy adults after radiofrequency ablation of T1a renal tumours. BJU Int 2014; 113 (1) 51-55
  • 67 Wah TM, Irving HC, Gregory W, Cartledge J, Joyce AD, Selby PJ. Radiofrequency ablation (RFA) of renal cell carcinoma (RCC): experience in 200 tumours. BJU Int 2014; 113 (3) 416-428
  • 68 Balageas P, Cornelis F, Le Bras Y , et al. Ten-year experience of percutaneous image-guided radiofrequency ablation of malignant renal tumours in high-risk patients. Eur Radiol 2013; 23 (7) 1925-1932
  • 69 Dib RE, Touma NJ, Kapoor A. Review of the efficacy and safety of radiofrequency ablation for the treatment of small renal masses. Can Urol Assoc J 2009; 3 (2) 143-149
  • 70 Rhim H, Dodd III GD, Chintapalli KN , et al. Radiofrequency thermal ablation of abdominal tumors: lessons learned from complications. . Radiographics 2004; 24 (1) 41-52
  • 71 El Dib R, Touma NJ, Kapoor A. Cryoablation vs radiofrequency ablation for the treatment of renal cell carcinoma: a meta-analysis of case series studies. BJU Int 2012; 110 (4) 510-516
  • 72 Pirasteh A, Snyder L, Boncher N, Passalacqua M, Rosenblum D, Prologo JD. Cryoablation vs. radiofrequency ablation for small renal masses. Acad Radiol 2011; 18 (1) 97-100
  • 73 Gervais DA. Cryoablation versus radiofrequency ablation for renal tumor ablation: time to reassess?. J Vasc Interv Radiol 2013; 24 (8) 1135-1138
  • 74 Truesdale CM, Soulen MC, Clark TW , et al. Percutaneous computed tomography-guided renal mass radiofrequency ablation versus cryoablation: doses of sedation medication used. J Vasc Interv Radiol 2013; 24 (3) 347-350
  • 75 Simon CJ, Dupuy DE, Mayo-Smith WW. Microwave ablation: principles and applications. . Radiographics 2005; 25 (Suppl. 01) S69-S83
  • 76 Brace CL. Microwave tissue ablation: biophysics, technology, and applications. Crit Rev Biomed Eng 2010; 38 (1) 65-78
  • 77 Yu J, Liang P, Yu XL , et al. US-guided percutaneous microwave ablation of renal cell carcinoma: intermediate-term results. Radiology 2012; 263 (3) 900-908
  • 78 Castle SM, Salas N, Leveillee RJ. Initial experience using microwave ablation therapy for renal tumor treatment: 18-month follow-up. Urology 2011; 77 (4) 792-797
  • 79 Guan W, Bai J, Liu J , et al. Microwave ablation versus partial nephrectomy for small renal tumors: intermediate-term results. J Surg Oncol 2012; 106 (3) 316-321
  • 80 Davalos RV, Mir IL, Rubinsky B. Tissue ablation with irreversible electroporation. Ann Biomed Eng 2005; 33 (2) 223-231
  • 81 Edd JF, Horowitz L, Davalos RV, Mir LM, Rubinsky B. In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans Biomed Eng 2006; 53 (7) 1409-1415
  • 82 Deodhar A, Monette S, Single Jr GW , et al. Renal tissue ablation with irreversible electroporation: preliminary results in a porcine model. Urology 2011; 77 (3) 754-760
  • 83 Wendler JJ, Porsch M, Hühne S , et al. Short- and mid-term effects of irreversible electroporation on normal renal tissue: an animal model. Cardiovasc Intervent Radiol 2013; 36 (2) 512-520
  • 84 Silk MT, Wimmer T, Lee KS , et al. Percutaneous ablation of peribiliary tumors with irreversible electroporation. J Vasc Interv Radiol 2014; 25 (1) 112-118
  • 85 Thomson KR, Cheung W, Ellis SJ , et al. Investigation of the safety of irreversible electroporation in humans. J Vasc Interv Radiol 2011; 22 (5) 611-621
  • 86 Tracy CR, Kabbani W, Cadeddu JA. Irreversible electroporation (IRE): a novel method for renal tissue ablation. BJU Int 2011; 107 (12) 1982-1987
  • 87 Philips P, Hays D, Martin RC. Irreversible electroporation ablation (IRE) of unresectable soft tissue tumors: learning curve evaluation in the first 150 patients treated. PLoS ONE 2013; 8 (11) e76260
  • 88 Pech M, Janitzky A, Wendler JJ , et al. Irreversible electroporation of renal cell carcinoma: a first-in-man phase I clinical study. Cardiovasc Intervent Radiol 2011; 34 (1) 132-138
  • 89 Nabi G, Goodman C, Melzer A. High intensity focused ultrasound treatment of small renal masses: clinical effectiveness and technological advances. Indian J Urol 2010; 26 (3) 331-337
  • 90 Dubinsky TJ, Cuevas C, Dighe MK, Kolokythas O, Hwang JH. High-intensity focused ultrasound: current potential and oncologic applications. AJR Am J Roentgenol 2008; 190 (1) 191-199
  • 91 Klingler HC, Susani M, Seip R, Mauermann J, Sanghvi N, Marberger MJ. A novel approach to energy ablative therapy of small renal tumours: laparoscopic high-intensity focused ultrasound. Eur Urol 2008; 53 (4) 810-816 , discussion 817–818
  • 92 Marberger M, Schatzl G, Cranston D, Kennedy JE. Extracorporeal ablation of renal tumours with high-intensity focused ultrasound. BJU Int 2005; 95 (Suppl. 02) 52-55
  • 93 Häcker A, Michel MS, Marlinghaus E, Köhrmann KU, Alken P. Extracorporeally induced ablation of renal tissue by high-intensity focused ultrasound. BJU Int 2006; 97 (4) 779-785