Synlett 2014; 25(13): 1888-1890
DOI: 10.1055/s-0034-1378273
© Georg Thieme Verlag Stuttgart · New York

Total Synthesis of (+)-Greek Tobacco Lactone

Juha H. Siitonen
Department of Chemistry, University of Jyväskylä, 40014 Jyväskylän yliopisto, Finland   Fax: +358(14)2602501   Email:
Petri M. Pihko*
Department of Chemistry, University of Jyväskylä, 40014 Jyväskylän yliopisto, Finland   Fax: +358(14)2602501   Email:
› Author Affiliations
Further Information

Publication History

Received: 30 April 2014

Accepted: 20 May 2014

Publication Date:
27 May 2014 (online)


An enantioselective, protecting-group-free, total synthesis of (+)-Greek tobacco lactone has been achieved by using an organocatalytic Mukaiyama–Michael reaction and a stereospecific oxa-Michael reaction as key steps.

Supporting Information

  • References and Notes

  • 1 Pettersson T, Eklund A, Wahlberg I. J. Agric. Food Chem. 1993; 41: 2097
    • 2a Kito K, Ookura R, Yoshida S, Namikoshi M, Ooi T, Kusumi T. Org. Lett. 2008; 10: 225
    • 2b Gouiffes D, Juge M, Grimaud N, Welin L, Sauviat MP, Barbin Y, Laurent D, Roussakis C, Henichart JP, Verbist JF. Toxicon 1988; 26: 1129
    • 2c Jurd L, Wong RY. Aust. J. Chem. 1984; 37: 1127
    • 2d Davies DH, Snape EW, Suter PJ, King TJ, Falshaw CP. J. Chem. Soc., Chem. Commun. 1981; 1073
    • 2e Wright AE, Botelho JC, Guzmán E, Harmody D, Linley P, McCarthy PJ, Pitts TP, Pomponi SA, Reed JK. J. Nat. Prod. 2007; 70: 412
    • 3a Clark JS, Hayes ST, Blake AJ, Gobbi L. Tetrahedron Lett. 2007; 48: 2501
    • 3b Zúñiga A, Pazos G, Besada P, Fall Y. Tetrahedron Lett. 2012; 53: 4293
    • 4a Kemppainen EK, Sahoo G, Valkonen A, Pihko PM. Org. Lett. 2012; 14: 1086
    • 4b Kemppainen EK, Sahoo G, Piisola A, Hamza A, Kótai B, Pápai I, Pihko PM. Chem. Eur. J. 2014; 20: 5893
    • 5a Shibata T, Nakatsui K, Soai K. Inorg. Chim. Acta 1999; 296: 33
    • 5b Lurain AE, Maestri A, Kelly AR, Carroll PJ, Walsh PJ. J. Am. Chem. Soc. 2004; 126: 13608
  • 6 Hargaden GC, Guiry PJ. Adv. Synth. Catal. 2007; 349: 2407
  • 7 Wan Z.-K, Choi H.-W, Kang F.-A, Nakajima K, Demeke D, Kishi Y. Org. Lett. 2002; 4: 4431
  • 8 Blaauw RH, Brière J.-F, de Jong R, Benningshof JC. J, van Ginkel AE, Fraanje J, Goubitz K, Schenk H, Rutjes FP. J. T, Hiemstra H. J. Org. Chem. 2001; 66: 233
  • 9 The lack of reactivity of aldehyde 3, even with Grignard reagents, is surprising, although we have made similar observations with a related aldehyde; see: Kemppainen E. K.; Doctoral Dissertation; University of Jyväskylä: Finland, 2013; (
  • 10 Xu D, Crispino GA, Sharpless KB. J. Am. Chem. Soc. 1992; 114: 7570
    • 11a Basabe P, Delgado S, Marcos IS, Diez D, Diego A, de Román M, Sanz F, Urones JG. Tetrahedron 2007; 63: 8939
    • 11b Efskind J, Rømming C, Undheim K. J. Chem. Soc., Perkin Trans. 1 1999; 12: 1677
  • 12 Couladouros EA, Vidali VP. Chem. Eur. J. 2004; 10: 3822
  • 13 Another advantage of the second-generation route is that the enantioselective Sharpless dihydroxylation adds another filter for the purity of the product, because the C4 epimer left over from the Mukaiyama–Michael step is removed in the recrystallization of alcohol 7. The improvement of purity in two consecutive enantioselective steps is a manifestation of the Horeau principle; see: Vigneron JP, Dhaenes M, Horeau A. Tetrahedron 1973; 29: 1055
  • 14 Crystallographic data for diol 8 have been deposited with the accession number CCDC 997889, and can be obtained free of charge from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44(1223)336033; E-mail:; Web site:
  • 15 Sharpless KB, Amberg W, Bennani YL, Crispino GA, Hartung J, Jeong KS, Kwong HL, Morikawa K, Wang ZM. J. Org. Chem. 1992; 57: 2768
    • 16a Ushakov DB, Navickas V, Ströbele M, Maichle-Mössmer C, Sasse F, Maier ME. Org. Lett. 2011; 13: 2090
    • 16b Burgess EM, Penton HR. Jr, Taylor EA. J. Org. Chem. 1973; 38: 26
  • 17 Marcos IS, Pedrero AB, Sexmero MJ, Diez D, Basabe P, García N, Moro RF, Broughton HB, Mollinedo F, Urones JG. J. Org. Chem. 2003; 68: 7496
  • 18 Although the enantioselectivity of the Mukaiyama–Michael reaction is acceptable (94:6 in this case), it is obvious that improving the selectivity of this step would immediately increase the overall yield and efficiency of the entire sequence. Efforts to improve the selectivity of the Mukaiyama–Michael step are ongoing.