Z Orthop Unfall 2014; 152(4): 320-327
DOI: 10.1055/s-0034-1382867
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Aktueller Stand der Stammzelltherapie in Orthopädie und Unfallchirurgie

Stem Cell-Based Therapy in Orthopaedics and Trauma Surgery – Current Concepts
T. M. Randau
1   Klinik und Poliklinik für Orthopädie und Unfallchirurgie, Universitätsklinikum Bonn
,
S. Gravius
1   Klinik und Poliklinik für Orthopädie und Unfallchirurgie, Universitätsklinikum Bonn
,
A. Nüssler
2   Siegfried Weller Institut für Unfallmedizinische Forschung, BG Unfallklinik, Eberhard-Karls Universität Tübingen
› Author Affiliations
Further Information

Publication History

Publication Date:
21 August 2014 (online)

Zusammenfassung

In den letzten Jahren wurden viele neue Heilverfahren für muskuloskeletale Erkrankungen entwickelt. Einige dieser neuen Verfahren beruhen auf dem gezielten Einsatz von Stammzellen, um Heilungsprozesse zu initiieren, Defizite auszugleichen oder die Regeneration von Sehnen, Muskeln, Knochen oder Knorpel zu aktivieren. Dies kann durch den direkten Einsatz von Stammzellen auf oder in einem Trägermaterial oder durch eine Kombination mit Tissue Engineering erreicht werden. In diesem Artikel geben wir einen kurzen Überblick über mögliche Einsatzgebiete von induzierbaren pluripotenten, hämatopoetischen und adulten Stammzellen sowie über deren Einsatz in muskuloskeletalem Gewebe. Zusätzlich fassen wir die derzeitige rechtliche Situation bei der Anwendung von Stammzellen am Menschen zusammen.

Abstract

Over the last few years, numerous new treatment methods have been developed for musculoskeletal diseases. Some of these new methods are based on the targeted use of stem cells to initiate healing processes, to compensate for deficits or to activate the regeneration of tendons, muscles, bones and cartilage. This goal can be achieved through the direct use of stem cells on or in a carrier material or through a combination with tissue engineering. In this article, we give a short overview of the possible fields of application of inducible pluripotent haematopoietic, and adult stem cells as well as on their use in musculoskeletal tissue. Furthermore, we provide a summary of the current legal situation concerning the application of stem cells in humans.

 
  • Literatur

  • 1 Lidgren L. The Bone and Joint Decade and the global economic and healthcare burden of musculoskeletal disease. J Rheumatol Suppl 2003; 67: 4-5
  • 2 Dreinhofer KE. [The bone and joint decade–chances for orthopedics and traumatic surgery]. Z Orthop Unfall 2007; 145: 399-402
  • 3 Sun H, Liu W, Zhou G et al. Tissue engineering of cartilage, tendon and bone. Front Med 2011; 5: 61-69
  • 4 Brown PT, Handorf AM, Jeon WB et al. Stem cell-based tissue engineering approaches for musculoskeletal regeneration. Curr Pharm Des 2013; 19: 3429-3445
  • 5 Colter DC, Sekiya I, Prockop DJ. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci U S A 2001; 98: 7841-7845
  • 6 Jiang Y, Jahagirdar BN, Reinhardt RL et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41-49
  • 7 Dawson JI, Kanczler J, Tare R et al. Concise review: bridging the gap: bone regeneration using skeletal stem cell-based strategies-where are we now?. Stem Cells 2014; 32: 35-44
  • 8 Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 1966; 16: 381-390
  • 9 Zomorodian E, Baghaban Eslaminejad M. Mesenchymal stem cells as a potent cell source for bone regeneration. Stem Cells Int 2012; 2012: 980353
  • 10 Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-147
  • 11 Kuo TK, Ho JH, Lee OK. Mesenchymal stem cell therapy for nonmusculoskeletal diseases: emerging applications. Cell Transplant 2009; 18: 1013-1028
  • 12 Bruder SP, Ricalton NS, Boynton RE et al. Mesenchymal stem cell surface antigen SB-10 corresponds to activated leukocyte cell adhesion molecule and is involved in osteogenic differentiation. J Bone Miner Res 1998; 13: 655-663
  • 13 Haynesworth SE, Baber MA, Caplan AI. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 1992; 13: 69-80
  • 14 Dominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315-317
  • 15 Augello A, Tasso R, Negrini SM et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol 2005; 35: 1482-1490
  • 16 Kode JA, Mukherjee S, Joglekar MV et al. Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy 2009; 11: 377-391
  • 17 Kolar P, Schmidt-Bleek K, Schell H et al. The early fracture hematoma and its potential role in fracture healing. Tissue Eng Part B Rev 2010; 16: 427-434
  • 18 Chatterjea A, Lapointe VL, Alblas J et al. Suppression of the immune system as a critical step for bone formation from allogeneic osteoprogenitors implanted in rats. J Cell Mol Med 2014; 18: 134-142
  • 19 Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292: 154-156
  • 20 Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145-1147
  • 21 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-676
  • 22 Yu J, Vodyanik MA, Smuga-Otto K et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917-1920
  • 23 Yu J, Hu K, Smuga-Otto K et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 2009; 324: 797-801
  • 24 Walmsley GG, Hyun J, McArdle A et al. Induced pluripotent stem cells in regenerative medicine and disease modeling. Curr Stem Cell Res Ther 2014; 9: 73-81
  • 25 Kim N, Cho SG. Clinical applications of mesenchymal stem cells. Korean J Intern Med 2013; 28: 387-402
  • 26 Stolzing A, Jones E, McGonagle D et al. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev 2008; 129: 163-173
  • 27 Li Z, Liu C, Xie Z et al. Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation. PLoS One 2011; 6: e20526
  • 28 Liu L, Rando TA. Manifestations and mechanisms of stem cell aging. J Cell Biol 2011; 193: 257-266
  • 29 Yan X, Ehnert S, Culmes M et al. 5-azacytidine improves the osteogenic differentiation potential of aged human adipose-derived mesenchymal stem cells by DNA demethylation. PLoS One 2014; 9: e90846
  • 30 Homma Y, Zimmermann G, Hernigou P. Cellular therapies for the treatment of non-union: the past, present and future. Injury 2013; 44 (Suppl. 01) S46-S49
  • 31 Connolly JF, Guse R, Tiedeman J et al. Autologous marrow injection for delayed unions of the tibia: a preliminary report. J Orthop Trauma 1989; 3: 276-282
  • 32 Connolly JF, Guse R, Tiedeman J et al. Autologous marrow injection as a substitute for operative grafting of tibial nonunions. Clin Orthop Relat Res 1991; 266: 259-270
  • 33 Hernigou P, Poignard A, Beaujean F et al. Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 2005; 87: 1430-1437
  • 34 Kim SJ, Shin YW, Yang KH et al. A multi-center, randomized, clinical study to compare the effect and safety of autologous cultured osteoblast(Ossron) injection to treat fractures. BMC Musculoskelet Disord 2009; 10: 20
  • 35 Dreger T, Watson JT, Akers W et al. Intravenous application of CD271-selected mesenchymal stem cells during fracture healing. J Orthop Trauma 2014; 28 (Suppl. 01) S15-S19
  • 36 Fayaz HC, Giannoudis PV, Vrahas MS et al. The role of stem cells in fracture healing and nonunion. Int Orthop 2011; 35: 1587-1597
  • 37 Cancedda R, Giannoni P, Mastrogiacomo M. A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials 2007; 28: 4240-4250
  • 38 Pneumaticos SG, Triantafyllopoulos GK, Basdra EK et al. Segmental bone defects: from cellular and molecular pathways to the development of novel biological treatments. J Cell Mol Med 2010; 14: 2561-2569
  • 39 Pape HC, Evans A, Kobbe P. Autologous bone graft: properties and techniques. J Orthop Trauma 2010; 24 (Suppl. 01) S36-S40
  • 40 Kanellopoulos AD, Soucacos PN. Management of nonunion with distraction osteogenesis. Injury 2006; 37 (Suppl. 01) S51-S55
  • 41 Mistry AS, Mikos AG. Tissue engineering strategies for bone regeneration. Adv Biochem Eng Biotechnol 2005; 94: 1-22
  • 42 Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury 2007; 38 (Suppl. 04) S3-S6
  • 43 Havens AM, Shiozawa Y, Jung Y et al. Human very small embryonic-like cells generate skeletal structures, in vivo. Stem Cells Dev 2013; 22: 622-630
  • 44 Berner A, Reichert JC, Woodruff MA et al. Autologous vs. allogenic mesenchymal progenitor cells for the reconstruction of critical sized segmental tibial bone defects in aged sheep. Acta Biomater 2013; 9: 7874-7884
  • 45 Lee JW, Kim KJ, Kang KS et al. Development of a bone reconstruction technique using a solid free-form fabrication (SFF)-based drug releasing scaffold and adipose-derived stem cells. J Biomed Mater Res A 2013; 101: 1865-1875
  • 46 Du CH, Li NY, Gao N et al. A preliminary study on the application of bone marrow stromal cell sheet on the formation of functional tissue-engineered bone in dogs. J Oral Maxillofac Surg 2013; 71: 1531.e1-1531.e10
  • 47 Meijer GJ, de Bruijn JD, Koole R et al. Cell based bone tissue engineering in jaw defects. Biomaterials 2008; 29: 3053-3061
  • 48 Quarto R, Mastrogiacomo M, Cancedda R et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 2001; 344: 385-386
  • 49 Marcacci M, Kon E, Moukhachev V et al. Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 2007; 13: 947-955
  • 50 Vacanti CA, Bonassar LJ, Vacanti MP et al. Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med 2001; 344: 1511-1514
  • 51 Morishita T, Honoki K, Ohgushi H et al. Tissue engineering approach to the treatment of bone tumors: three cases of cultured bone grafts derived from patientsʼ mesenchymal stem cells. Artif Organs 2006; 30: 115-118
  • 52 Calori GM, Mazza E, Colombo M et al. The use of bone-graft substitutes in large bone defects: any specific needs?. Injury 2011; 42 (Suppl. 02) S56-S63
  • 53 Thesleff T, Lehtimaki K, Niskakangas T et al. Cranioplasty with adipose-derived stem cells and biomaterial: a novel method for cranial reconstruction. Neurosurgery 2011; 68: 1535-1540
  • 54 Gronthos S. Reconstruction of human mandible by tissue engineering. Lancet 2004; 364: 735-736
  • 55 Kaigler D, Pagni G, Park CH et al. Stem cell therapy for craniofacial bone regeneration: a randomized, controlled feasibility trial. Cell Transplant 2013; 22: 767-777
  • 56 Buckwalter JA, Glimcher MJ, Cooper RR et al. Bone biology. I: Structure, blood supply, cells, matrix, and mineralization. Instr Course Lect 1996; 45: 371-386
  • 57 Horwitz EM, Prockop DJ, Fitzpatrick LA et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999; 5: 309-313
  • 58 Le Blanc K, Götherström C, Ringdén O et al. Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 2005; 79: 1607-1614
  • 59 Götherström C, Westgren M, Shaw SW et al. Pre- and postnatal transplantation of fetal mesenchymal stem cells in osteogenesis imperfecta: a two-center experience. Stem Cells Transl Med 2014; 3: 255-264
  • 60 Otsuru S, Gordon PL, Shimono K et al. Transplanted bone marrow mononuclear cells and MSCs impart clinical benefit to children with osteogenesis imperfecta through different mechanisms. Blood 2012; 120: 1933-1941
  • 61 Hauzeur JP, Gangji V. Phases 1–3 clinical trials using adult stem cells in osteonecrosis and nonunion fractures. Stem Cells Int 2010; 2010: 410170
  • 62 Hernigou P, Beaujean F. Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop Relat Res 2002; 405: 14-23
  • 63 Ji WF, Ding WH, Ma ZC et al. [Three-tunnels core decompression with implantation of bone marrow stromal cells (bMSCs) and decalcified bone matrix (DBM) for the treatment of early femoral head necrosis]. Zhongguo Gu Shang 2008; 21: 776-778
  • 64 Wang BL, Sun W, Shi ZC et al. Treatment of nontraumatic osteonecrosis of the femoral head with the implantation of core decompression and concentrated autologous bone marrow containing mononuclear cells. Arch Orthop Trauma Surg 2010; 130: 859-865
  • 65 Calori GM, Mazza E, Colombo M et al. Treatment of AVN using the induction chamber technique and a biological-based approach: Indications and clinical results. Injury 2014; 45: 369-373
  • 66 Wang T, Wang W, Yin ZS. Treatment of osteonecrosis of the femoral head with thorough debridement, bone grafting and bone-marrow mononuclear cells implantation. Eur J Orthop Surg Traumatol 2014; 24: 197-202
  • 67 Gangji V, Hauzeur JP, Matos C et al. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. A pilot study. J Bone Joint Surg Am 2004; 86: 1153-1160
  • 68 Zhao D, Cui D, Wang B et al. Treatment of early stage osteonecrosis of the femoral head with autologous implantation of bone marrow-derived and cultured mesenchymal stem cells. Bone 2012; 50: 325-330
  • 69 Dalle Carbonare L, Valenti MT, Zanatta M et al. Circulating mesenchymal stem cells with abnormal osteogenic differentiation in patients with osteoporosis. Arthritis Rheum 2009; 60: 3356-3365
  • 70 Antebi B, Pelled G, Gazit D. Stem cell therapy for osteoporosis. Curr Osteoporos Rep 2014; 12: 41-47
  • 71 Peng S, Zhou G, Luk KD et al. Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Cell Physiol Biochem 2009; 23: 165-174
  • 72 Cho SW, Sun HJ, Yang JY et al. Transplantation of mesenchymal stem cells overexpressing RANK-Fc or CXCR4 prevents bone loss in ovariectomized mice. Mol Ther 2009; 17: 1979-1987
  • 73 Egermann M, Schneider E, Evans CH et al. The potential of gene therapy for fracture healing in osteoporosis. Osteoporos Int 2005; 16 (Suppl. 02) S120-S128
  • 74 Lelovas PP, Xanthos TT, Thoma SE et al. The laboratory rat as an animal model for osteoporosis research. Comp Med 2008; 58: 424-430
  • 75 Li J, Zhang L, Zhou L et al. Beneficial effects of non-matched allogeneic cord blood mononuclear cells upon patients with idiopathic osteoporosis. J Transl Med 2012; 10: 102
  • 76 Moreira-Teixeira LS, Georgi N, Leijten J et al. Cartilage tissue engineering. Endocr Dev 2011; 21: 102-115
  • 77 Ducheyne P, Mauck RL, Smith DH. Biomaterials in the repair of sports injuries. Nat Mater 2012; 11: 652-654
  • 78 Brittberg M, Lindahl A, Nilsson A et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331: 889-895
  • 79 Kon E, Filardo G, Di Martino A et al. ACI and MACI. J Knee Surg 2012; 25: 17-22
  • 80 Iwasa J, Engebretsen L, Shima Y et al. Clinical application of scaffolds for cartilage tissue engineering. Knee Surg Sports Traumatol Arthrosc 2009; 17: 561-577
  • 81 Castro NJ, Hacking SA, Zhang LG. Recent progress in interfacial tissue engineering approaches for osteochondral defects. Ann Biomed Eng 2012; 40: 1628-1640
  • 82 Dhinsa BS, Adesida AB. Current clinical therapies for cartilage repair, their limitation and the role of stem cells. Curr Stem Cell Res Ther 2012; 7: 143-148
  • 83 Huselstein C, Li Y, He X. Mesenchymal stem cells for cartilage engineering. Biomed Mater Eng 2012; 22: 69-80
  • 84 Deng S, Huang R, Wang J et al. Miscellaneous animal models accelerate the application of mesenchymal stem cells for cartilage regeneration. Curr Stem Cell Res Ther 2014; 9: 223-233
  • 85 Centeno CJ, Busse D, Kisiday J et al. Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician 2008; 11: 343-353
  • 86 Sekiya I, Muneta T, Koga H et al. [Articular cartilage regeneration with synovial mesenchymal stem cells]. Clin Calcium 2011; 21: 879-889
  • 87 Orozco L, Munar A, Soler R et al. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation 2013; 95: 1535-1541
  • 88 Davatchi F, Abdollahi BS, Mohyeddin M et al. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis 2011; 14: 211-215
  • 89 Gobbi A, Karnatzikos G, Sankineani SR. One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee. Am J Sports Med 2014; 42: 648-657
  • 90 Pelttari K, Steck E, Richter W. The use of mesenchymal stem cells for chondrogenesis. Injury 2008; 39 (Suppl. 01) S58-S65
  • 91 Randau TM, Schildberg FA, Alini M et al. The effect of dexamethasone and triiodothyronine on terminal differentiation of primary bovine chondrocytes and chondrogenically differentiated mesenchymal stem cells. PLoS One 2013; 8: e72973
  • 92 Sadler TW, Langman J, Drews U. Medizinische Embryologie – die normale menschliche Entwicklung und ihre Fehlbildungen. 11. Aufl.. Stuttgart: Thieme; 2008
  • 93 Asou Y, Nifuji A, Tsuji K et al. Coordinated expression of scleraxis and Sox9 genes during embryonic development of tendons and cartilage. J Orthop Res 2002; 20: 827-833
  • 94 Tozer S, Duprez D. Tendon and ligament: development, repair and disease. Birth Defects Res C Embryo Today 2005; 75: 226-236
  • 95 Benjamin M, Ralphs JR. The cell and developmental biology of tendons and ligaments. Int Rev Cytol 2000; 196: 85-130
  • 96 Awad HA, Butler DL, Boivin GP et al. Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng 1999; 5: 267-277
  • 97 Saito T, Dennis JE, Lennon DP et al. Myogenic expression of mesenchymal stem cells within myotubes of mdx mice in vitro and in vivo. Tissue Eng 1995; 1: 327-343
  • 98 Awad HA, Boivin GP, Dressler MR et al. Repair of patellar tendon injuries using a cell-collagen composite. J Orthop Res 2003; 21: 420-431
  • 99 Shih YR, Chen CN, Tsai SW et al. Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells 2006; 24: 2391-2397
  • 100 Zhang YZ, Venugopal J, Huang ZM et al. Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules 2005; 6: 2583-2589
  • 101 Martins A, Reis RL, Neves NM. Electrospinning: processing technique for tissue engineering scaffolding. Int Mater Rev 2008; 53: 257-274
  • 102 Paul-Ehrlich Institut. Arzneimittel für neuartige Therapien ATMP – Regulatorische Anforderungen und Praktische Hinweise.. Im Internet: http://www.pei.de/SharedDocs/Downloads/pu/innovationsbuero/broschuere-atmp-anforderungen-hinweise.pdf Stand: 2012