Rofo 2014; 186(12): 1094-1101
DOI: 10.1055/s-0034-1385009
Review
© Georg Thieme Verlag KG Stuttgart · New York

Cardiovascular Hybrid Imaging using PET/MRI

Kardiovaskuläre Hybridbildgebung mit PET/MRT
Felix Nensa
Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen
,
Thomas Schlosser
Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen
› Author Affiliations
Further Information

Publication History

03 March 2014

05 July 2014

Publication Date:
03 September 2014 (online)

Abstract

The following overview provides a summary of the state of the art and research as well as potential clinical applications of cardiovascular PET/MR imaging. PET/MRI systems have been clinically available for a few years, and their use in cardiac imaging has been successfully demonstrated. At this period in time, some of the technical difficulties that arose at the beginning have been solved; in particular with respect to MRI-based attenuation correction, caution should be exercised with PET quantification. In addition, many promising technical options are still in the developmental stage, such as MRI-based motion correction of PET data resulting from simultaneous MR acquisition, and are not yet available for cardiovascular imaging. On the other hand, PET/MRI has been used to demonstrate significant pathologies such as acute and chronic myocardial infarction, myocarditis or cardiac sarcoidosis; future applications in clinical routine or within studies appear to be possible. In coming years additional studies will have to be performed to prove diagnostic gain at a reasonable cost-benefit ratio before valid conclusions are possible regarding the clinical utility and future of cardiovascular PET/MR imaging.

Key Points:

• The feasibility of cardiovascular PET/MRI has been successfully demonstrated and application in clinical routine is possible.

• Initial experience suggests added value of PET/MRI with FDG in pathologies like acute myocardial infarction, myocarditis, cardiac sarcoidosis and cardiac tumors.

• Technical improvements in the field of attenuation correction and MRI-based motion correction as well as new PET tracers could result in new applications for cardiovascular PET/MRI in next years.

Citation Format:

• Nensa Felix. Kardiovaskuläre Hybridbildgebung mit PET/MRT. Fortschr Röntgenstr 2014; 186: 1094 – 1101

Zusammenfassung

Die folgende Übersichtsarbeit gibt eine kurze Zusammenfassung zum Stand der Technik und Forschung sowie zu potentiellen klinischen Einsatzgebieten der kardiovaskulären PET/MRT Bildgebung. Nachdem PET/MRT Systeme seit wenigen Jahren klinisch verfügbar sind, konnte deren Einsatz bei der Herzbildgebung bereits erfolgreich demonstriert werden. Zum gegenwärtigen Zeitpunkt sind bereits einige technische Schwierigkeiten aus der Anfangszeit gelöst, wobei insbesondere in Bezug auf die MRT basierte Schwächungskorrektur weiterhin Vorsicht bei der PET Quantifizierung geboten ist. Auch befinden sich vielversprechende technische Möglichkeiten, wie die MRT-basierte Bewegungskorrektur der PET-Daten, die sich durch die simultane Akquisition ergeben, noch in einem frühen Entwicklungsstadium und sind noch nicht für die kardiovaskuläre Bildgebung verfügbar. Demgegenüber wurden bereits einige wichtige Pathologien, wie akute und chronische Herzinfarkte, Myokarditis oder kardiale Sarkoidose mittels PET/MRT dargestellt und zukünftige Anwendungen in der klinischen Routine oder innerhalb von Studien erscheinen möglich. In den nächsten Jahren werden weitere Studien zunächst einen diagnostischen Zugewinn bei vertretbarem Kosten-Nutzen-Verhältnis belegen müssen, bevor valide Aussagen zur klinischen Wertigkeit und Zukunft der kardiovaskulären PET/MRT Bildgebung möglich sind.

Deutscher Artikel/German Article

 
  • References

  • 1 Nekolla SG, Martinez-Moeller A, Saraste A. PET and MRI in cardiac imaging: from validation studies to integrated applications. Eur J Nucl Med Mol Imaging 2009; S121-S130
  • 2 Torigian DA, Zaidi H et al. PET/MR Imaging: Technical Aspects and Potential Clinical Applications. Radiology 2013; 1: 26-44
  • 3 Quick HH. Integrated PET/MR. J Magn Reson Imaging 2013; 2: 243-258
  • 4 Ouyang J, Li Q, El FakhriG. Magnetic resonance-based motion correction for positron emission tomography imaging. Semin Nucl Med 2013; 1: 60-67
  • 5 Petibon Y, Ouyang J et al. Cardiac motion compensation and resolution modeling in simultaneous PET-MR: a cardiac lesion detection study. Phys Med Biol 2013; 7: 2085-2102
  • 6 Wang H, Fei B. An MR image-guided, voxel-based partial volume correction method for PET images. Med Phys 2012; 1: 179-195
  • 7 Martinez-Möller A, Souvatzoglou M et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 2009; 4: 520-526
  • 8 Nensa F, Poeppel TD et al. Hybrid PET/MR Imaging of the Heart: Feasibility and Initial Results. Radiology 2013; 2: 366-373
  • 9 Nekolla SG, Miethaner C et al. Reproducibility of polar map generation and assessment of defect severity and extent assessment in myocardial perfusion imaging using positron emission tomography. Eur J Nucl Med 1998; 9: 1313-1321
  • 10 Nensa F, Poeppel TD, Beiderwellen KJ et al. Standardized Comparison of Glucose Metabolism and Late Gadolinium-enhancement in Patients with Acute Myocardial Infarction Using Parametric Polar Maps in Cardiac PET/MRI. Paper presented at: 2013 Annual Meeting of the Radiological Society of North America; December 3, 2013. Chicago, USA:
  • 11 Dilsizian V, Bacharach SL et al. PET myocardial perfusion and metabolism clinical imaging. J Nucl Cardiol 2009; 4: 651
  • 12 Harisankar CN, Mittal BR et al. Utility of high fat and low carbohydrate diet in suppressing myocardial FDG uptake. J Nucl Cardiol 2011; 5: 926-936
  • 13 Schlosser T, Nensa F et al. Hybrid MRI/PET of the heart: a new complementary imaging technique for simultaneous acquisition of MRI and PET data. Heart 2012; 99 (05) 351-352
  • 14 Rischpler C, Nekolla SG et al. Hybrid PET/MR Imaging of the Heart: Potential, Initial Experiences, and Future Prospects. J Nucl Med 2013; 54 (03) 402-415
  • 15 Nensa F, Poeppel TD, Beiderwellen KJ et al. Cardiac PET/MRI with 18F-FDG: Feasibility and Initial Results in Patients with Acute Myocardial Infarction. Paper presented at: 2013 Annual Meeting of the Radiological Society of North America; December 3, 2013. Chicago, USA
  • 16 Lee WW, Marinelli B et al. PET/MRI of Inflammation in Myocardial Infarction. J Am Coll Cardiol 2012; 2: 153-163
  • 17 Kramer CM, Sinusas AJ et al. Multimodality imaging of myocardial injury and remodeling. J Nucl Med 2010; 107S-121S
  • 18 Hunold P, Brandt-Mainz K et al. Evaluation of myocardial viability with contrast-enhanced magnetic resonance imaging--comparison of the late enhancement technique with positronemission tomography. Fortschr Röntgenstr 2002; 7: 867-873
  • 19 Haroon A, Zumla A, Bomanji J. Role of fluorine 18 fluorodeoxyglucose positron emission tomography-computed tomography in focal and generalized infectious and inflammatory disorders. Clin Infect Dis 2012; 9: 1333-1341
  • 20 O'Meara C, Menezes LJ et al. Inital experience of imaging cardiac sarcoidosis using hybrid PET-MR – a technologist's case study. J Cardiovasc Magn Reson 2013; 15 (1) T1, DOI: 10.1186/1532-429X-15-S1-T1
  • 21 White JA, Rajchl M et al. Active cardiac sarcoidosis: first clinical experience of simultaneous positron emission tomography-magnetic resonance imaging for the diagnosis of cardiac disease. Circulation 2013; 22: e639-e641
  • 22 Schneider S, Batrice A et al. Utility of multimodal cardiac imaging with PET/MRI in cardiac sarcoidosis: implications for diagnosis, monitoring and treatment. Eur Heart J 2013; 35 (05) 312
  • 23 Schatka I, Bengel FM. Advanced imaging of cardiac sarcoidosis. J Nucl Med 2014; 55 (01) 99-106
  • 24 Soussan M, Augier A et al. Functional Imaging in Extrapulmonary Sarcoidosis: FDG-PET/CT and MR Features. Clin Nucl Med 2013; 39 (02) e146-e159
  • 25 Sobic-Saranovic DP, Grozdic IT et al. Responsiveness of FDG PET/CT to Treatment of Patients With Active Chronic Sarcoidosis. Clin Nucl Med 2013; 7: 516-521
  • 26 Friedrich MG, Sechtem U et al. Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. J Am Coll Cardiol 2009; 17: 1475-1487
  • 27 Nensa F, Poeppel TD et al. Multiparametric assessment of myocarditis using simultaneous positron emission tomography/magnetic resonance imaging. Eur Heart J 2014; DOI: 10.1093/eurheartj/ehu086. Epub 2014 Feb 26
  • 28 Wu C, Li F et al. PET imaging of inflammation biomarkers. Theranostics 2013; 7: 448-466
  • 29 Probst S, Seltzer A et al. The appearance of cardiac metastasis from squamous cell carcinoma of the lung on F-18 FDG PET/CT and post hoc PET/MRI. Clin Nucl Med 2011; 4: 311-312
  • 30 Rahbar K, Seifarth H et al. Differentiation of malignant and benign cardiac tumors using 18F-FDG PET/CT. J Nucl Med 2012; 6: 856-863
  • 31 Neumann T, Biermann J et al. Heart failure: the commonest reason for hospital admission in Germany: medical and economic perspectives. Dtsch Arztebl Int 2009; 16: 269-275
  • 32 Lautamäki R, Tipre D, Bengel FM. Cardiac sympathetic neuronal imaging using PET. Eur J Nucl Med Mol Imaging 2007; S74-S85
  • 33 Hacker M, Weiss M. MIBG-Szintigrafie des Herzens MIBG Scintigraphy of the Heart. Nuklearmediziner 2009; 1: 23-27
  • 34 Maron BJ, Towbin JA et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 2006; 14: 1807-1816
  • 35 Ibrahim T, Nekolla SG et al. Simultaneous Positron Emission Tomography/Magnetic Resonance Imaging Identifies Sustained Regional Abnormalities in Cardiac Metabolism and Function in Stress-Induced Transient Midventricular Ballooning Syndrome. Circulation 2012; 21: e324-e326
  • 36 Kong E-J, Lee S-H, Cho I-H. Myocardial Fibrosis in Hypertrophic Cardiomyopathy Demonstrated by Integrated Cardiac F-18 FDG PET/MR. Nuclear Medicine and Molecular Imaging 2013; 3: 196-200
  • 37 Sachchithanantham S, Wechalekar AD. Imaging in systemic amyloidosis. Br Med Bull 2013; 41-56
  • 38 Schäfers M, Wichter T et al. Cardiac 123I-MIBG uptake in idiopathic ventricular tachycardia and fibrillation. J Nucl Med 1999; 40: 1-5
  • 39 Tahara N, Kai H et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2006; 9: 1825-1831
  • 40 Joshi NV, Vesey AT et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 2013; 383 (9918) 705-713
  • 41 Hermann S, Starsichova A et al. Non-FDG imaging of atherosclerosis: will imaging of MMPs assess plaque vulnerability?. J Nucl Cardiol 2012; 3: 609-617
  • 42 Metz S, Beer AJ et al. Characterization of carotid artery plaques with USPIO-enhanced MRI: assessment of inflammation and vascularity as in vivo imaging biomarkers for plaque vulnerability. Int J Cardiovasc Imaging 2011; 6: 901-912
  • 43 Chun SY, Reese TG et al. MRI-based nonrigid motion correction in simultaneous PET/MRI. J Nucl Med 2012; 8: 1284-1291
  • 44 Ripa RS, Knudsen A et al. Feasibility of simultaneous PET/MR of the carotid artery: first clinical experience and comparison to PET/CT. Am J Nucl Med Mol Imaging 2013; 4: 361-371
  • 45 Glaudemans AW, de Vries EF et al. The use of (18)F-FDG-PET/CT for diagnosis and treatment monitoring of inflammatory and infectious diseases. Clin Dev Immunol 2013; DOI: 10.1155/2013/623036. Epub 2013 Aug 21