Aktuelle Urol 2014; 2(03): 229-238
DOI: 10.1055/s-0034-1387250
Immunsystem, Stütz- und Bindegewebe
© Georg Thieme Verlag KG Stuttgart · New York

Knochenmetastasen

Carsten-Henning Ohlmann
Further Information

Publication History

Publication Date:
18 September 2014 (online)

Epidemiologie und Ätiologie

Bezogen auf alle Tumorentitäten sind ossäre Metastasen am häufigsten bei Mamma-, Prostata- und Bronchialkarzinomen zu finden [1]. Urologische Tumorerkrankungen zählen weiterhin zu den häufigsten Tumorerkrankungen des Menschen. Daher finden sich urologische Tumordiagnosen auch in den Statistiken zur Häufigkeit von ossären Metastasen wieder.

Bei den urologischen Tumorerkrankungen sind es v. a. das bereits erwähnte Prostatakarzinom, gefolgt von Nieren-/Urothel- und seltener Hodentumoren, bei denen ossäre Metastasen auftreten. Der Knochen ist nach Leber und Lunge der dritthäufigste Metastasierungsort. Von allen Knochenmetastasen sind ca. zwei Drittel im Bereich der Wirbelsäule lokalisiert, weshalb die Wirbelsäulenmetastasen klinisch die meiste Relevanz aufweisen. Bis zu 10 % aller Tumorpatienten erleiden im Laufe ihrer Erkrankung eine Wirbelsäulenmetastase [1], wovon bei 10 – 20 % eine metastasenbedingte Myelonkompression auftritt [2].

 
  • Literatur

  • 1 Greenlee RT, Murray T, Bolden S et al. Cancer statistics, 2000. CA Cancer J Clin 2000; 50: 7-33
  • 2 Siegal T. Current considerations in the management of neoplastic spinal cord compression. Spine (Phila Pa 1976) 1989; 14: 223-228
  • 3 Coleman RE. Bone cancer in 2011: Prevention and treatment of bone metastases. Nat Rev Clin Oncol 2011; 9: 76-78
  • 4 Ulmar B, Huch K, Kocak T et al. The prognostic influence of primary tumour and region of the affected spinal segment in 217 surgical patients with spinal metastases of different entities. Z Orthop Grenzgeb 2007; 145: 31-38
  • 5 Clohisy DR, Mantyh PW. Bone cancer pain. Clin Orthop Relat Res 2003; S279-288
  • 6 Kirsch CM. Positron emission tomography and scintigraphy. Nuclear imaging in clinical orthopaedics. Orthopade 2006; 35: 995-1009, quiz 1010
  • 7 Romer W, Nomayr A, Uder M et al. SPECT-guided CT for evaluating foci of increased bone metabolism classified as indeterminate on SPECT in cancer patients. J Nucl Med 2006; 47: 1102-1106
  • 8 Strobel K, Burger C, Seifert B et al. Characterization of focal bone lesions in the axial skeleton: performance of planar bone scintigraphy compared with SPECT and SPECT fused with CT. AJR Am J Roentgenol 2007; 188: W467-474
  • 9 Lecouvet FE, Geukens D, Stainier A et al. Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: diagnostic and cost-effectiveness and comparison with current detection strategies. J Clin Oncol 2007; 25: 3281-3287
  • 10 Spuentrup E, Buecker A, Adam G et al. Diffusion-weighted MR imaging for differentiation of benign fracture edema and tumor infiltration of the vertebral body. AJR Am J Roentgenol 2001; 176: 351-358
  • 11 Wu LM, Gu HY, Zheng J et al. Diagnostic value of whole-body magnetic resonance imaging for bone metastases: a systematic review and meta-analysis. J Magn Reson Imaging 2011; 34: 128-135
  • 12 Boellaard R, OʼDoherty MJ, Weber WA et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 2010; 37: 181-200
  • 13 Buck AK, Herrmann K, Stargardt T et al. Economic evaluation of PET and PET/CT in oncology: evidence and methodologic approaches. J Nucl Med 2010; 51: 401-412
  • 14 Evangelista L, Panunzio A, Polverosi R et al. Early bone marrow metastasis detection: the additional value of FDG-PET/CT vs. CT imaging. Biomed Pharmacother 2012; 66: 448-453
  • 15 Datir A, Pechon P, Saifuddin A. Imaging-guided percutaneous biopsy of pathologic fractures: a retrospective analysis of 129 cases. AJR Am J Roentgenol 2009; 193: 504-508
  • 16 Saad F, Chen YM, Gleason DM et al. Continuing benefit of zoledronic acid in preventing skeletal complications in patients with bone metastases. Clin Genitourin Cancer 2007; 5: 390-396
  • 17 Smith MR, Halabi S, Ryan CJ et al. Randomized controlled trial of early zoledronic acid in men with castration-sensitive prostate cancer and bone metastases: results of CALGB 90202 (alliance). J Clin Oncol 2014; 32: 1143-1150
  • 18 Lipton A, Fizazi K, Stopeck AT et al. Superiority of denosumab to zoledronic acid for prevention of skeletal-related events: a combined analysis of 3 pivotal, randomised, phase 3 trials. Eur J Cancer 2012; 48: 3082-3092
  • 19 Wirth M, Tammela T, Cicalese V et al. Prevention of Bone Metastasis in Patients with High-risk Nonmetastatic Prostate Cancer Treated with Zoledronic Acid: Efficacy and Safety Results of the Zometa European Study (ZEUS). Eur Urol 2014; (epub ahead of print)
  • 20 Smith MR, Saad F, Coleman R et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet 2012; 379: 39-46
  • 21 Brady D, Parker CC, OʼSullivan JM. Bone-targeting radiopharmaceuticals including radium-223. Cancer J 2013; 19: 71-78
  • 22 Koswig S, Budach V. [Remineralization and pain relief in bone metastases after after different radiotherapy fractions (10 times 3 Gy vs. 1 time 8 Gy). A prospective study]. Strahlenther Onkol 1999; 175: 500-508
  • 23 Patchell RA, Tibbs PA, Regine WF et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet 2005; 366: 643-648
  • 24 Bartels RH, van der Linden YM, van der Graaf WT. Spinal extradural metastasis: review of current treatment options. CA Cancer J Clin 2008; 58: 245-259
  • 25 Lemke DM, Hacein-Bey L. Metastatic compression fractures – vertebroplasty for pain control. J Neurosci Nurs 2003; 35: 50-55