Semin Thromb Hemost 2014; 40(07): 774-784
DOI: 10.1055/s-0034-1387922
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Inherited Macrothrombocytopenias

David John Rabbolini
1   Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, New South Wales, Australia
2   Northern Blood Research Centre, Kolling Institute of Medical Research, The University of Sydney, Sydney, New South Wales, Australia
,
Marie Christine Morel-Kopp
1   Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, New South Wales, Australia
2   Northern Blood Research Centre, Kolling Institute of Medical Research, The University of Sydney, Sydney, New South Wales, Australia
,
William Stevenson
1   Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, New South Wales, Australia
2   Northern Blood Research Centre, Kolling Institute of Medical Research, The University of Sydney, Sydney, New South Wales, Australia
,
Christopher Morice Ward
1   Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, New South Wales, Australia
2   Northern Blood Research Centre, Kolling Institute of Medical Research, The University of Sydney, Sydney, New South Wales, Australia
› Author Affiliations
Further Information

Publication History

Publication Date:
31 August 2014 (online)

Abstract

Inherited macrothrombocytopenias are a clinically heterogeneous group of disorders, many of which cause moderate-to-severe bleeding tendencies in affected individuals, but which remain under-recognized and are frequently misdiagnosed as immune thrombocytopenia purpura. Diagnostic strategies to date have included a predominant phenotypic approach. The emergence of genetic testing and the implementation of next generation sequencing strategies in the investigation and diagnosis of these disorders have broadened our understanding of their pathogenesis, classification, and presentation. This review describes the increasingly expanding group of recognized inherited macrothrombocytopenias and highlights their pathophysiology and the role of phenotypic and genetic testing in their description and diagnosis.

 
  • References

  • 1 Savoia A, De Rocco D, Panza E , et al. Heavy chain myosin 9-related disease (MYH9 -RD): neutrophil inclusions of myosin-9 as a pathognomonic sign of the disorder. Thromb Haemost 2010; 103 (4) 826-832
  • 2 Novelli EM, Ragni MV. Genetics of bleeding disorders in women. Semin Thromb Hemost 2008; 34 (6) 509-519
  • 3 Jones ML, Murden SL, Bem D , et al; UK GAPP study group. Rapid genetic diagnosis of heritable platelet function disorders with next-generation sequencing: proof-of-principle with Hermansky-Pudlak syndrome. J Thromb Haemost 2012; 10 (2) 306-309
  • 4 Kunishima S, Okuno Y, Yoshida K , et al. ACTN1 mutations cause congenital macrothrombocytopenia. Am J Hum Genet 2013; 92 (3) 431-438
  • 5 Stevenson WS, Morel-Kopp MC, Chen Q , et al. GFI1B mutation causes a bleeding disorder with abnormal platelet function. J Thromb Haemost 2013; 11 (11) 2039-2047
  • 6 Monteferrario D, Bolar NA, Marneth AE , et al. A dominant-negative GFI1B mutation in the gray platelet syndrome. N Engl J Med 2014; 370 (3) 245-253
  • 7 Althaus K, Greinacher A. MYH-9 Related Platelet Disorders: Strategies for Management and Diagnosis. Transfus Med Hemother 2010; 37 (5) 260-267
  • 8 Thon JN, Italiano Jr JE. Does size matter in platelet production?. Blood 2012; 120 (8) 1552-1561
  • 9 Balduini CL, Pecci A, Savoia A. Recent advances in the understanding and management of MYH9-related inherited thrombocytopenias. Br J Haematol 2011; 154 (2) 161-174
  • 10 Althaus K, Greinacher A. MYH9-related platelet disorders. Semin Thromb Hemost 2009; 35 (2) 189-203
  • 11 Hegglin R. Gleichzeitige konstitutionelle Veranderungen an Neutrophilen und Thrombozyten. Helv Med Acta 1945; 12: 439-440
  • 12 Epstein CJ, Sahud MA, Piel CF , et al. Hereditary macrothrombocytopathia, nephritis and deafness. Am J Med 1972; 52 (3) 299-310
  • 13 Peterson LC, Rao KV, Crosson JT, White JG. Fechtner syndrome—a variant of Alport's syndrome with leukocyte inclusions and macrothrombocytopenia. Blood 1985; 65 (2) 397-406
  • 14 Greinacher A, Nieuwenhuis HK, White JG. Sebastian platelet syndrome: a new variant of hereditary macrothrombocytopenia with leukocyte inclusions. Blut 1990; 61 (5) 282-288
  • 15 Hodge T, Cope MJ. A myosin family tree. J Cell Sci 2000; 113 (Pt 19) 3353-3354
  • 16 Niederman R, Pollard TD. Human platelet myosin. II. In vitro assembly and structure of myosin filaments. J Cell Biol 1975; 67 (1) 72-92
  • 17 Pecci A, Panza E, Pujol-Moix N , et al. Position of nonmuscle myosin heavy chain IIA (NMMHC-IIA) mutations predicts the natural history of MYH9-related disease. Hum Mutat 2008; 29 (3) 409-417
  • 18 Pecci A, Bozzi V, Panza E , et al. Mutations responsible for MYH9-related thrombocytopenia impair SDF-1-driven migration of megakaryoblastic cells. Thromb Haemost 2011; 106 (4) 693-704
  • 19 Pecci A, Malara A, Badalucco S , et al. Megakaryocytes of patients with MYH9-related thrombocytopenia present an altered proplatelet formation. Thromb Haemost 2009; 102 (1) 90-96
  • 20 Pecci A, Canobbio I, Balduini A , et al. Pathogenetic mechanisms of hematological abnormalities of patients with MYH9 mutations. Hum Mol Genet 2005; 14 (21) 3169-3178
  • 21 Noris P, Spedini P, Belletti S, Magrini U, Balduini CL. Thrombocytopenia, giant platelets, and leukocyte inclusion bodies (May-Hegglin anomaly): clinical and laboratory findings. Am J Med 1998; 104 (4) 355-360
  • 22 Yi Y, Sen Zhang G, Xu M , et al. Analysis of clinical manifestations, mutant gene and encoded protein in two Chinese MYH9-related disease families. Clin Chim Acta 2006; 373 (1-2) 49-54
  • 23 Pecci A, Gresele P, Klersy C , et al. Eltrombopag for the treatment of the inherited thrombocytopenia deriving from MYH9 mutations. Blood 2010; 116 (26) 5832-5837
  • 24 Canobbio I, Noris P, Pecci A, Balduini A, Balduini CL, Torti M. Altered cytoskeleton organization in platelets from patients with MYH9-related disease. J Thromb Haemost 2005; 3 (5) 1026-1035
  • 25 Kunishima S, Kobayashi R, Itoh TJ, Hamaguchi M, Saito H. Mutation of the beta1-tubulin gene associated with congenital macrothrombocytopenia affecting microtubule assembly. Blood 2009; 113 (2) 458-461
  • 26 Freson K, De Vos R, Wittevrongel C , et al. The TUBB1 Q43P functional polymorphism reduces the risk of cardiovascular disease in men by modulating platelet function and structure. Blood 2005; 106 (7) 2356-2362
  • 27 Gieger C, Radhakrishnan A, Cvejic A , et al. New gene functions in megakaryopoiesis and platelet formation. Nature 2011; 480 (7376) 201-208
  • 28 Guéguen P, Rouault K, Chen JM , et al. A missense mutation in the alpha-actinin 1 gene (ACTN1) is the cause of autosomal dominant macrothrombocytopenia in a large French family. PLoS ONE 2013; 8 (9) e74728
  • 29 Nurden P, Debili N, Coupry I , et al. Thrombocytopenia resulting from mutations in filamin A can be expressed as an isolated syndrome. Blood 2011; 118 (22) 5928-5937
  • 30 Feng Y, Walsh CA. The many faces of filamin: a versatile molecular scaffold for cell motility and signalling. Nat Cell Biol 2004; 6 (11) 1034-1038
  • 31 Falet H. New insights into the versatile roles of platelet FlnA. Platelets 2013; 24 (1) 1-5
  • 32 Berrou E, Adam F, Lebret M , et al. Heterogeneity of platelet functional alterations in patients with filamin A mutations. Arterioscler Thromb Vasc Biol 2013; 33 (1) e11-e18
  • 33 López JA, Andrews RK, Afshar-Kharghan V, Berndt MC. Bernard-Soulier syndrome. Blood 1998; 91 (12) 4397-4418
  • 34 Savoia A, Pastore A, De Rocco D , et al. Clinical and genetic aspects of Bernard-Soulier syndrome: searching for genotype/phenotype correlations. Haematologica 2011; 96 (3) 417-423
  • 35 Salles II, Feys HB, Iserbyt BF, De Meyer SF, Vanhoorelbeke K, Deckmyn H. Inherited traits affecting platelet function. Blood Rev 2008; 22 (3) 155-172
  • 36 Poujol C, Ware J, Nieswandt B, Nurden AT, Nurden P. Absence of GPIbalpha is responsible for aberrant membrane development during megakaryocyte maturation: ultrastructural study using a transgenic model. Exp Hematol 2002; 30 (4) 352-360
  • 37 Savoia A, Balduini CL, Savino M , et al. Autosomal dominant macrothrombocytopenia in Italy is most frequently a type of heterozygous Bernard-Soulier syndrome. Blood 2001; 97 (5) 1330-1335
  • 38 Noris P, Perrotta S, Bottega R , et al. Clinical and laboratory features of 103 patients from 42 Italian families with inherited thrombocytopenia derived from the monoallelic Ala156Val mutation of GPIbα (Bolzano mutation). Haematologica 2012; 97 (1) 82-88
  • 39 Balduini CL, Savoia A, Seri M. Inherited thrombocytopenias frequently diagnosed in adults. J Thromb Haemost 2013; 11 (6) 1006-1019
  • 40 Diz-Kücükkaya R, López JA. Inherited disorders of platelets: membrane glycoprotein disorders. Hematol Oncol Clin North Am 2013; 27 (3) 613-627
  • 41 Thon JN, Macleod H, Begonja AJ , et al. Microtubule and cortical forces determine platelet size during vascular platelet production. Nat Commun 2012; 3: 852
  • 42 Balduini A, Malara A, Pecci A , et al. Proplatelet formation in heterozygous Bernard-Soulier syndrome type Bolzano. J Thromb Haemost 2009; 7 (3) 478-484
  • 43 Strassel C, Eckly A, Léon C , et al. Intrinsic impaired proplatelet formation and microtubule coil assembly of megakaryocytes in a mouse model of Bernard-Soulier syndrome. Haematologica 2009; 94 (6) 800-810
  • 44 Harrison P, Mackie I, Mumford A , et al; British Committee for Standards in Haematology. Guidelines for the laboratory investigation of heritable disorders of platelet function. Br J Haematol 2011; 155 (1) 30-44
  • 45 Cooney KA, Ginsburg D. Comparative analysis of type 2b von Willebrand disease mutations: implications for the mechanism of von Willebrand factor binding to platelets. Blood 1996; 87 (6) 2322-2328
  • 46 Russell SD, Roth GJ. Pseudo-von Willebrand disease: a mutation in the platelet glycoprotein Ib alpha gene associated with a hyperactive surface receptor. Blood 1993; 81 (7) 1787-1791
  • 47 Takahashi H, Murata M, Moriki T , et al. Substitution of Val for Met at residue 239 of platelet glycoprotein Ib alpha in Japanese patients with platelet-type von Willebrand disease. Blood 1995; 85 (3) 727-733
  • 48 Othman M, Notley C, Lavender FL , et al. Identification and functional characterization of a novel 27-bp deletion in the macroglycopeptide-coding region of the GPIBA gene resulting in platelet-type von Willebrand disease. Blood 2005; 105 (11) 4330-4336
  • 49 Moriki T, Murata M, Kitaguchi T , et al. Expression and functional characterization of an abnormal platelet membrane glycoprotein Ib alpha (Met239 —> Val) reported in patients with platelet-type von Willebrand disease. Blood 1997; 90 (2) 698-705
  • 50 Hamilton A, Ozelo M, Leggo J , et al. Frequency of platelet type versus type 2B von Willebrand disease. An international registry-based study. Thromb Haemost 2011; 105 (3) 501-508
  • 51 Woods AI, Sanchez-Luceros A, Bermejo E , et al. Identification of p.W246L as a novel mutation in the GP1BA gene responsible for platelet-type von Willebrand disease. Semin Thromb Hemost 2014; 40 (2) 151-160
  • 52 Ragni MV, Bontempo FA, Hassett AC. von Willebrand disease and bleeding in women. Haemophilia 1999; 5 (5) 313-317
  • 53 Favaloro EJ, Patterson D, Denholm A , et al. Differential identification of a rare form of platelet-type (pseudo-) von Willebrand disease (VWD) from Type 2B VWD using a simplified ristocetin-induced-platelet-agglutination mixing assay and confirmed by genetic analysis. Br J Haematol 2007; 139 (4) 623-626
  • 54 Favaloro EJ, Lippi G, Franchini M. Contemporary platelet function testing. Clin Chem Lab Med 2010; 48 (5) 579-598
  • 55 Favaloro EJ. Rethinking the diagnosis of von Willebrand disease. Thromb Res 2011; 127 (Suppl. 02) S17-S21
  • 56 Favaloro EJ, Bonar R, Meiring M, Street A, Marsden K. RCPA QAP in Haematology. 2B or not 2B? Disparate discrimination of functional VWF discordance using different assay panels or methodologies may lead to success or failure in the early identification of type 2B VWD. Thromb Haemost 2007; 98 (2) 346-358
  • 57 Favaloro EJ. Phenotypic identification of platelet-type von Willebrand disease and its discrimination from type 2B von Willebrand disease: a question of 2B or not 2B? A story of nonidentical twins? Or two sides of a multidenominational or multifaceted primary-hemostasis coin?. Semin Thromb Hemost 2008; 34 (1) 113-127
  • 58 Favaloro EJ. Genetic testing for von Willebrand disease: the case against. J Thromb Haemost 2010; 8 (1) 6-12
  • 59 James PD, Notley C, Hegadorn C , et al. The mutational spectrum of type 1 von Willebrand disease: Results from a Canadian cohort study. Blood 2007; 109 (1) 145-154
  • 60 Federici AB, Mannucci PM, Castaman G , et al. Clinical and molecular predictors of thrombocytopenia and risk of bleeding in patients with von Willebrand disease type 2B: a cohort study of 67 patients. Blood 2009; 113 (3) 526-534
  • 61 Poon MC, Rand ML, Jackson SC. 2B or not to be—the 45-year saga of the Montreal Platelet Syndrome. Thromb Haemost 2010; 104 (5) 903-910
  • 62 Jackson SC, Sinclair GD, Cloutier S, Duan Z, Rand ML, Poon MC. The Montreal platelet syndrome kindred has type 2B von Willebrand disease with the VWF V1316M mutation. Blood 2009; 113 (14) 3348-3351
  • 63 Nurden P, Chretien F, Poujol C, Winckler J, Borel-Derlon A, Nurden A. Platelet ultrastructural abnormalities in three patients with type 2B von Willebrand disease. Br J Haematol 2000; 110 (3) 704-714
  • 64 Nurden P, Debili N, Vainchenker W , et al. Impaired megakaryocytopoiesis in type 2B von Willebrand disease with severe thrombocytopenia. Blood 2006; 108 (8) 2587-2595
  • 65 Nurden AT, Nurden P. Inherited thrombocytopenias. Haematologica 2007; 92 (9) 1158-1164
  • 66 Nurden P, Gobbi G, Nurden A , et al. Abnormal VWF modifies megakaryocytopoiesis: studies of platelets and megakaryocyte cultures from patients with von Willebrand disease type 2B. Blood 2010; 115 (13) 2649-2656
  • 67 Liang HP, Morel-Kopp MC, Curtin J , et al. Heterozygous loss of platelet glycoprotein (GP) Ib-V-IX variably affects platelet function in velocardiofacial syndrome (VCFS) patients. Thromb Haemost 2007; 98 (6) 1298-1308
  • 68 Pallotta R, Evangelista V, Margaglione M, Bucci I, Saponari A. Macrothrombocytopenia in velocardiofacial syndrome. J Thromb Haemost 2005; 3 (3) 601-603
  • 69 Van Geet C, Devriendt K, Eyskens B, Vermylen J, Hoylaerts MF. Velocardiofacial syndrome patients with a heterozygous chromosome 22q11 deletion have giant platelets. Pediatr Res 1998; 44 (4) 607-611
  • 70 Ducrou W, Kimber RJ. Stomatocytes, haemolytic anaemia and abdominal pain in Mediterranean migrants. Some examples of a new syndrome?. Med J Aust 1969; 2 (22) 1087-1091
  • 71 Gunay-Aygun M, Zivony-Elboum Y, Gumruk F , et al. Gray platelet syndrome: natural history of a large patient cohort and locus assignment to chromosome 3p. Blood 2010; 116 (23) 4990-5001
  • 72 Whiteheart SW. α-Granules at the BEACH. Blood 2013; 122 (19) 3247-3248
  • 73 Nurden AT, Nurden P. The gray platelet syndrome: clinical spectrum of the disease. Blood Rev 2007; 21 (1) 21-36
  • 74 Albers CA, Cvejic A, Favier R , et al. Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome. Nat Genet 2011; 43 (8) 735-737
  • 75 Gunay-Aygun M, Falik-Zaccai TC, Vilboux T , et al. NBEAL2 is mutated in gray platelet syndrome and is required for biogenesis of platelet α-granules. Nat Genet 2011; 43 (8) 732-734
  • 76 Bottega R, Pecci A, De Candia E , et al. Correlation between platelet phenotype and NBEAL2 genotype in patients with congenital thrombocytopenia and α-granule deficiency. Haematologica 2013; 98 (6) 868-874
  • 77 Lo B, Li L, Gissen P , et al. Requirement of VPS33B, a member of the Sec1/Munc18 protein family, in megakaryocyte and platelet alpha-granule biogenesis. Blood 2005; 106 (13) 4159-4166
  • 78 Kahr WH, Lo RW, Li L , et al. Abnormal megakaryocyte development and platelet function in Nbeal2(-/-) mice. Blood 2013; 122 (19) 3349-3358
  • 79 Cattaneo M. Light transmission aggregometry and ATP release for the diagnostic assessment of platelet function. Semin Thromb Hemost 2009; 35 (2) 158-167
  • 80 Zon LI, Tsai SF, Burgess S, Matsudaira P, Bruns GA, Orkin SH. The major human erythroid DNA-binding protein (GF-1): primary sequence and localization of the gene to the X chromosome. Proc Natl Acad Sci U S A 1990; 87 (2) 668-672
  • 81 Tsang AP, Visvader JE, Turner CA , et al. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell 1997; 90 (1) 109-119
  • 82 Hong W, Nakazawa M, Chen YY , et al. FOG-1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1. EMBO J 2005; 24 (13) 2367-2378
  • 83 Ciovacco WA, Raskind WH, Kacena MA. Human phenotypes associated with GATA-1 mutations. Gene 2008; 427 (1-2) 1-6
  • 84 Tsai SF, Martin DI, Zon LI, D'Andrea AD, Wong GG, Orkin SH. Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature 1989; 339 (6224) 446-451
  • 85 Freson K, Devriendt K, Matthijs G , et al. Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation. Blood 2001; 98 (1) 85-92
  • 86 Balduini CL, Pecci A, Loffredo G , et al. Effects of the R216Q mutation of GATA-1 on erythropoiesis and megakaryocytopoiesis. Thromb Haemost 2004; 91 (1) 129-140
  • 87 Doerks T, Copley RR, Schultz J, Ponting CP, Bork P. Systematic identification of novel protein domain families associated with nuclear functions. Genome Res 2002; 12 (1) 47-56
  • 88 Vassen L, Okayama T, Möröy T. Gfi1b:green fluorescent protein knock-in mice reveal a dynamic expression pattern of Gfi1b during hematopoiesis that is largely complementary to Gfi1. Blood 2007; 109 (6) 2356-2364
  • 89 Grimes HL, Chan TO, Zweidler-McKay PA, Tong B, Tsichlis PN. The Gfi-1 proto-oncoprotein contains a novel transcriptional repressor domain, SNAG, and inhibits G1 arrest induced by interleukin-2 withdrawal. Mol Cell Biol 1996; 16 (11) 6263-6272
  • 90 Randrianarison-Huetz V, Laurent B, Bardet V, Blobe GC, Huetz F, Duménil D. Gfi-1B controls human erythroid and megakaryocytic differentiation by regulating TGF-beta signaling at the bipotent erythro-megakaryocytic progenitor stage. Blood 2010; 115 (14) 2784-2795
  • 91 Wilson NK, Foster SD, Wang X , et al. Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 2010; 7 (4) 532-544
  • 92 Balduini CL, Savoia A. Genetics of familial forms of thrombocytopenia. Hum Genet 2012; 131 (12) 1821-1832
  • 93 Kunishima S, Saito H. Congenital macrothrombocytopenias. Blood Rev 2006; 20 (2) 111-121
  • 94 Raslova H, Komura E, Le Couédic JP , et al. FLI1 monoallelic expression combined with its hemizygous loss underlies Paris-Trousseau/Jacobsen thrombopenia. J Clin Invest 2004; 114 (1) 77-84
  • 95 Lu K, Lee MH, Hazard S , et al. Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively. Am J Hum Genet 2001; 69 (2) 278-290
  • 96 Stewart GW, Makris M. Mediterranean macrothrombocytopenia and phytosterolaemia/sitosterolaemia. Haematologica 2008; 93 (2) e29
  • 97 Stewart GW, Lloyd J, Pegel K. Mediterranean stomatocytosis/macrothrombocytopenia: update from Adelaide, Australia. Br J Haematol 2006; 132 (5) 660-661
  • 98 McGlasson DL, Fritsma GA. Whole blood platelet aggregometry and platelet function testing. Semin Thromb Hemost 2009; 35 (2) 168-180
  • 99 Nurden AT, Pillois X, Nurden P. Understanding the genetic basis of Glanzmann thrombasthenia: implications for treatment. Expert Rev Hematol 2012; 5 (5) 487-503
  • 100 Nurden AT, Pillois X, Fiore M, Heilig R, Nurden P. Glanzmann thrombasthenia-like syndromes associated with Macrothrombocytopenias and mutations in the genes encoding the αIIbβ3 integrin. Semin Thromb Hemost 2011; 37 (6) 698-706
  • 101 Beer JH, Rabaglio M, Berchtold P , et al. Autoantibodies against the platelet glycoproteins (GP) IIb/IIIa, Ia/IIa, and IV and partial deficiency in GPIV in a patient with a bleeding disorder and a defective platelet collagen interaction. Blood 1993; 82 (3) 820-829
  • 102 Yufu Y, Ideguchi H, Narishige T , et al. Familial macrothrombocytopenia associated with decreased glycosylation of platelet membrane glycoprotein IV. Am J Hematol 1990; 33 (4) 271-273
  • 103 Yamamoto N, Ikeda H, Tandon NN , et al. A platelet membrane glycoprotein (GP) deficiency in healthy blood donors: Naka- platelets lack detectable GPIV (CD36). Blood 1990; 76 (9) 1698-1703
  • 104 Yamamoto N, Akamatsu N, Yamazaki H, Tanoue K. Normal aggregations of glycoprotein IV (CD36)-deficient platelets from seven healthy Japanese donors. Br J Haematol 1992; 81 (1) 86-92
  • 105 Becker PS, Clavell LA, Beardsley DS. Giant platelets with abnormal surface glycoproteins: a new familial disorder associated with mitral valve insufficiency. J Pediatr Hematol Oncol 1998; 20 (1) 69-73
  • 106 Noris P, Klersy C, Zecca M , et al. Platelet size distinguishes between inherited macrothrombocytopenias and immune thrombocytopenia. J Thromb Haemost 2009; 7 (12) 2131-2136
  • 107 Latger-Cannard V, Hoarau M, Salignac S, Baumgart D, Nurden P, Lecompte T. Mean platelet volume: comparison of three analysers towards standardization of platelet morphological phenotype. Int J Lab Hematol 2012; 34 (3) 300-310
  • 108 Neunert C, Lim W, Crowther M, Cohen A, Solberg Jr L, Crowther MA. American Society of Hematology. The American Society of Hematology 2011 evidence-based practice guideline for immune thrombocytopenia. Blood 2011; 117 (16) 4190-4207