Facial Plast Surg 2014; 30(05): 554-560
DOI: 10.1055/s-0034-1395211
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Orbital Reconstruction: Prefabricated Implants, Data Transfer, and Revision Surgery

Gido Bittermann
1   Department of Oral and Maxillofacial Surgery and Regional Plastic Surgery, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
,
Marc Christian Metzger
1   Department of Oral and Maxillofacial Surgery and Regional Plastic Surgery, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
,
Stefan Schlager
2   Biological Anthropology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
,
Wolf Alexander Lagrèze
3   Eye Center, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
,
Nikolai Gross
3   Eye Center, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
,
Carl-Peter Cornelius
4   Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians-University Munich, Germany
,
Rainer Schmelzeisen
1   Department of Oral and Maxillofacial Surgery and Regional Plastic Surgery, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
14 November 2014 (online)

Abstract

External impact to the orbit may cause a blowout or zygomatico-maxillary fractures. Diagnosis and treatment of orbital wall fractures are based on both physical examination and computed tomography scan of the orbit. Injuries of the orbit often require a reconstruction of its orbital walls. Using computer-assisted techniques, anatomically preformed orbital implants, and intraoperative imaging offers precise and predictable results of orbital reconstructions. Secondary reconstruction of the orbital cavity is challenging due to fractures healed in malposition, defects, scarring, and lack of anatomic landmarks, and should be avoided by precise primary reconstruction. The development of preformed orbital implants based on topographical analysis of the orbital cavity was a milestone for the improvement of primary orbital reconstruction.

 
  • References

  • 1 Hoffmann J, Cornelius CP, Groten M, Pröbster L, Pfannenberg C, Schwenzer N. Orbital reconstruction with individually copy-milled ceramic implants. Plast Reconstr Surg 1998; 101 (3) 604-612
  • 2 Burm JS, Chung CH, Oh SJ. Pure orbital blowout fracture: new concepts and importance of medial orbital blowout fracture. Plast Reconstr Surg 1999; 103 (7) 1839-1849
  • 3 Nolasco FP, Mathog RH. Medial orbital wall fractures: classification and clinical profile. Otolaryngol Head Neck Surg 1995; 112 (4) 549-556
  • 4 Manolidis S, Weeks BH, Kirby M, Scarlett M, Hollier L. Classification and surgical management of orbital fractures: experience with 111 orbital reconstructions. J Craniofac Surg 2002; 13 (6) 726-737 , discussion 738
  • 5 Fan X, Li J, Zhu J, Li H, Zhang D. Computer-assisted orbital volume measurement in the surgical correction of late enophthalmos caused by blowout fractures. Ophthal Plast Reconstr Surg 2003; 19 (3) 207-211
  • 6 Hammer B, Prein J. Correction of post-traumatic orbital deformities: operative techniques and review of 26 patients. J Craniomaxillofac Surg 1995; 23 (2) 81-90
  • 7 Watanabe E, Watanabe T, Manaka S, Mayanagi Y, Takakura K. Three-dimensional digitizer (neuronavigator): new equipment for computed tomography-guided stereotaxic surgery. Surg Neurol 1987; 27 (6) 543-547
  • 8 Salvolini U. Traumatic injuries: imaging of facial injuries. Eur Radiol 2002; 12 (6) 1253-1261
  • 9 Marsh JL, Gado M. The longitudinal orbital CT projection: a versatile image for orbital assessment. Plast Reconstr Surg 1983; 71 (3) 308-317
  • 10 Waitzman AA, Posnick JC, Armstrong DC, Pron GE. Craniofacial skeletal measurements based on computed tomography: Part I. Accuracy and reproducibility. Cleft Palate Craniofac J 1992; 29 (2) 112-117
  • 11 Farkas LG, Katic MJ, Forrest CR , et al. International anthropometric study of facial morphology in various ethnic groups/races. J Craniofac Surg 2005; 16 (4) 615-646
  • 12 Chau A, Fung K, Yip L, Yap M. Orbital development in Hong Kong Chinese subjects. Ophthalmic Physiol Opt 2004; 24 (5) 436-439
  • 13 Furuta M. Measurement of orbital volume by computed tomography: especially on the growth of the orbit. Jpn J Ophthalmol 2001; 45 (6) 600-606
  • 14 Bentley RP, Sgouros S, Natarajan K, Dover MS, Hockley AD. Normal changes in orbital volume during childhood. J Neurosurg 2002; 96 (4) 742-746
  • 15 Converse JM, Smith B, Obear MF, Wood-Smith D. Orbital blowout fractures: a ten-year survey. Plast Reconstr Surg 1967; 39 (1) 20-36
  • 16 Hassfeld S, Mühling J, Zöller J. Intraoperative navigation in oral and maxillofacial surgery. Int J Oral Maxillofac Surg 1995; 24 (1, Pt 2) 111-119
  • 17 Frodel Jr JL, Pacheco E. The use of intraoperative image-guided surgical techniques for reconstruction of orbital and zygomatic deformities. Facial Plast Surg 1999; 15 (1) 83-89
  • 18 Ploder O, Wagner A, Enislidis G, Ewers R. Computer-assisted intraoperative visualization of dental implants. Augmented reality in medicine in German]. Radiologe 1995; 35 (9) 569-572
  • 19 Wagner A, Ploder O, Enislidis G, Truppe M, Ewers R. Virtual image guided navigation in tumor surgery—technical innovation. J Craniomaxillofac Surg 1995; 23 (5) 217-3
  • 20 Marmulla R, Hilbert M, Niederdellmann H. Inherent precision of mechanical, infrared and laser-guided navigation systems for computer-assisted surgery. J Craniomaxillofac Surg 1997; 25 (4) 192-197
  • 21 Gellrich NC, Schramm A, Hammer B , et al. Computer-assisted secondary reconstruction of unilateral posttraumatic orbital deformity. Plast Reconstr Surg 2002; 110 (6) 1417-1429
  • 22 Zizelmann C, Gellrich NC, Metzger MC, Schoen R, Schmelzeisen R, Schramm A. Computer-assisted reconstruction of orbital floor based on cone beam tomography. Br J Oral Maxillofac Surg 2007; 45 (1) 79-80
  • 23 Metzger MC, Bittermann G, Dannenberg L , et al. Design and development of a virtual anatomic atlas of the human skull for automatic segmentation in computer-assisted surgery, preoperative planning, and navigation. Int J CARS 2013; 8 (5) 691-702
  • 24 Scolozzi P, Jaques B. Computer-aided volume measurement of posttraumatic orbits reconstructed with AO titanium mesh plates: accuracy and reliability. Ophthal Plast Reconstr Surg 2008; 24 (5) 383-389
  • 25 Gosau M, Schöneich M, Draenert FG, Ettl T, Driemel O, Reichert TE. Retrospective analysis of orbital floor fractures—complications, outcome, and review of literature. Clin Oral Investig 2011; 15 (3) 305-313
  • 26 Jank S, Emshoff R, Schuchter B, Strobl H, Brandlmaier I, Norer B. Orbital floor reconstruction with flexible Ethisorb patches: a retrospective long-term follow-up study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003; 95 (1) 16-22
  • 27 Yilmaz M, Vayvada H, Aydin E, Menderes A, Atabey A. Repair of fractures of the orbital floor with porous polyethylene implants. Br J Oral Maxillofac Surg 2007; 45 (8) 640-644
  • 28 Tang W, Guo L, Long J , et al. Individual design and rapid prototyping in reconstruction of orbital wall defects. J Oral Maxillofac Surg 2010; 68 (3) 562-570
  • 29 Guo L, Tian W, Feng F, Long J, Li P, Tang W. Reconstruction of orbital floor fractures: comparison of individual prefabricated titanium implants and calvarial bone grafts. Ann Plast Surg 2009; 63 (6) 624-631
  • 30 Hidding J, Deitmer T, Hemprich A, Ahrberg W. Primary correction of orbital fractures using PDS-foil [in German]. Fortschr Kiefer Gesichtschir 1991; 36: 195-196
  • 31 Eppley BL, Sadove AM, Havlik RJ. Resorbable plate fixation in pediatric craniofacial surgery. Plast Reconstr Surg 1997; 100 (1) 1-7 , discussion 8–13
  • 32 Dietz A, Ziegler CM, Dacho A , et al. Effectiveness of a new perforated 0.15.  mm poly-p-dioxanon-foil versus titanium-dynamic mesh in reconstruction of the orbital floor. J Craniomaxillofac Surg 2001; 29 (2) 82-88
  • 33 Kozakiewicz M, Elgalal M, Loba P , et al. Clinical application of 3D pre-bent titanium implants for orbital floor fractures. J Craniomaxillofac Surg 2009; 37 (4) 229-234
  • 34 Morotomi T, Matsunaga K, Kusuhara H , et al. Long-term result of a biodegradable osteo-inductive copolymer for the treatment of orbital blowout fracture. J Craniomaxillofac Surg 2014; 42 (5) 443-447
  • 35 Gierloff M, Seeck NG, Springer I, Becker S, Kandzia C, Wiltfang J. Orbital floor reconstruction with resorbable polydioxanone implants. J Craniofac Surg 2012; 23 (1) 161-164
  • 36 Browning CW. Alloplast materials in orbital repair. Am J Ophthalmol 1967; 63 (5) 955-962
  • 37 Weintraub B, Cucin RL, Jacobs M. Extrusion of an infected orbital-floor prosthesis after 15 years. Plast Reconstr Surg 1981; 68 (4) 586-587
  • 38 Jordan DR, St Onge P, Anderson RL, Patrinely JR, Nerad JA. Complications associated with alloplastic implants used in orbital fracture repair. Ophthalmology 1992; 99 (10) 1600-1608
  • 39 Mauriello Jr JA. Inferior rectus muscle entrapped by Teflon implant after orbital floor fracture repair. Ophthal Plast Reconstr Surg 1990; 6 (3) 218-220
  • 40 Schramm A, Gellrich N-C, Naumann S, Bühner U, Schön R, Schmelzeisen R. Non-invasive referencing in computer assisted surgery. Med Biol Eng Comp Suppl. 1999; 37: 644-645
  • 41 Schmelzeisen R, Gellrich NC, Schoen R, Gutwald R, Zizelmann C, Schramm A. Navigation-aided reconstruction of medial orbital wall and floor contour in cranio-maxillofacial reconstruction. Injury 2004; 35 (10) 955-962
  • 42 Gear AJ, Lokeh A, Aldridge JH, Migliori MR, Benjamin CI, Schubert W. Safety of titanium mesh for orbital reconstruction. Ann Plast Surg 2002; 48 (1) 1-7 , discussion 7–9
  • 43 Scolozzi P, Momjian A, Heuberger J. Computer-aided volumetric comparison of reconstructed orbits for blow-out fractures with nonpreformed versus 3-dimensionally preformed titanium mesh plates: a preliminary study. J Comput Assist Tomogr 2010; 34 (1) 98-104
  • 44 Ellis III E, Tan Y. Assessment of internal orbital reconstructions for pure blowout fractures: cranial bone grafts versus titanium mesh. J Oral Maxillofac Surg 2003; 61 (4) 442-453
  • 45 Glassman RD, Manson PN, Vanderkolk CA , et al. Rigid fixation of internal orbital fractures. Plast Reconstr Surg 1990; 86 (6) 1103-1109 , discussion 1110–1111
  • 46 Oliver AJ. The use of titanium mesh in the management of orbital trauma—a retrospective study. Ann R Australas Coll Dent Surg 2000; 15: 193-198
  • 47 Kuttenberger JJ, Hardt N. Long-term results following reconstruction of craniofacial defects with titanium micro-mesh systems. J Craniomaxillofac Surg 2001; 29 (2) 75-81
  • 48 Schubert W, Gear AJ, Lee C , et al. Incorporation of titanium mesh in orbital and midface reconstruction. Plast Reconstr Surg 2002; 110 (4) 1022-1030 , discussion 1031–1032
  • 49 Lazaridis N, Makos C, Iordanidis S, Zouloumis L. The use of titanium mesh sheet in the fronto-zygomatico-orbital region. Case reports. Aust Dent J 1998; 43 (4) 223-228
  • 50 Schipper J, Ridder GJ, Spetzger U, Teszler CB, Fradis M, Maier W. Individual prefabricated titanium implants and titanium mesh in skull base reconstructive surgery. A report of cases. Eur Arch Otorhinolaryngol 2004; 261 (5) 282-290
  • 51 Hoffmann J, Cornelius CP, Groten M, Pröbster L, Schwenzer N. Using individually designed ceramic implants for secondary reconstruction of the bony orbit [in German]. Mund Kiefer Gesichtschir 1998; 2 (Suppl. 01) S98-S101
  • 52 Holck DE, Boyd Jr EM, Ng J, Mauffray RO. Benefits of stereolithography in orbital reconstruction. Ophthalmology 1999; 106 (6) 1214-1218
  • 53 Metzger MC, Schön R, Zizelmann C, Weyer N, Gutwald R, Schmelzeisen R. Semiautomatic procedure for individual preforming of titanium meshes for orbital fractures. Plast Reconstr Surg 2007; 119 (3) 969-976
  • 54 Schmelzeisen R, Schramm A. Computer-assisted reconstruction of the facial skeleton. Arch Facial Plast Surg 2003; 5 (5) 437
  • 55 Bite U, Jackson IT, Forbes GS, Gehring DG. Orbital volume measurements in enophthalmos using three-dimensional CT imaging. Plast Reconstr Surg 1985; 75 (4) 502-508
  • 56 Eufinger H, Wittkampf AR, Wehmöller M, Zonneveld FW. Single-step fronto-orbital resection and reconstruction with individual resection template and corresponding titanium implant: a new method of computer-aided surgery. J Craniomaxillofac Surg 1998; 26 (6) 373-378
  • 57 Heissler E, Fischer FS, Bolouri S , et al. Custom-made cast titanium implants produced with CAD/CAM for the reconstruction of cranium defects. Int J Oral Maxillofac Surg 1998; 27 (5) 334-338
  • 58 Perry M, Banks P, Richards R, Friedman EP, Shaw P. The use of computer-generated three-dimensional models in orbital reconstruction. Br J Oral Maxillofac Surg 1998; 36 (4) 275-284
  • 59 Chang PS, Parker TH, Patrick Jr CW, Miller MJ. The accuracy of stereolithography in planning craniofacial bone replacement. J Craniofac Surg 2003; 14 (2) 164-170
  • 60 Kermer C, Lindner A, Friede I, Wagner A, Millesi W. Preoperative stereolithographic model planning for primary reconstruction in craniomaxillofacial trauma surgery. J Craniomaxillofac Surg 1998; 26 (3) 136-139
  • 61 Metzger MC, Schön R, Tetzlaf R , et al. Topographical CT-data analysis of the human orbital floor. Int J Oral Maxillofac Surg 2007; 36 (1) 45-53
  • 62 Metzger MC, Schön R, Weyer N , et al. Anatomical 3-dimensional pre-bent titanium implant for orbital floor fractures. Ophthalmology 2006; 113 (10) 1863-1868
  • 63 Strong EB, Fuller SC, Wiley DF, Zumbansen J, Wilson MD, Metzger MC. Preformed vs intraoperative bending of titanium mesh for orbital reconstruction. Otolaryngol Head Neck Surg 2013; 149 (1) 60-66
  • 64 Farkas LG. Accuracy of anthropometric measurements: past, present, and future. Cleft Palate Craniofac J 1996; 33 (1) 10-18 , discussion 19–22
  • 65 Mazock JB, Schow SR, Triplett RG. Evaluation of ocular changes secondary to blowout fractures. J Oral Maxillofac Surg 2004; 62 (10) 1298-1302
  • 66 Clauser L, Galiè M, Pagliaro F, Tieghi R. Posttraumatic enophthalmos: etiology, principles of reconstruction, and correction. J Craniofac Surg 2008; 19 (2) 351-359
  • 67 Mustardé JC. The role of Lockwood's suspensory ligament in preventing downward displacement of the eye. Br J Plast Surg 1968; 21 (1) 73-81
  • 68 Ben Simon GJ, Molina M, Schwarcz RM, McCann JD, Goldberg RA. External (subciliary) vs internal (transconjunctival) involutional entropion repair. Am J Ophthalmol 2005; 139 (3) 482-487
  • 69 Mozzo P, Procacci C, Tacconi A, Martini PT, Andreis IA. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol 1998; 8 (9) 1558-1564
  • 70 Ng P, Chu C, Young N, Soo M. Imaging of orbital floor fractures. Australas Radiol 1996; 40 (3) 264-268
  • 71 Hohlweg-Majert B, Metzger MC, Kummer T, Schulze D. Morphometric analysis - Cone beam computed tomography to predict bone quality and quantity. J Craniomaxillofac Surg 2011; 39 (5) 330-334
  • 72 Heiland M, Schmelzle R, Hebecker A, Schulze D. Intraoperative 3D imaging of the facial skeleton using the SIREMOBIL Iso-C3D. Dentomaxillofac Radiol 2004; 33 (2) 130-132
  • 73 Heiland M, Schulze D, Blake F, Schmelzle R. Intraoperative imaging of zygomaticomaxillary complex fractures using a 3D C-arm system. Int J Oral Maxillofac Surg 2005; 34 (4) 369-375
  • 74 Siewerdsen JH, Moseley DJ, Burch S , et al. Volume CT with a flat-panel detector on a mobile, isocentric C-arm: pre-clinical investigation in guidance of minimally invasive surgery. Med Phys 2005; 32 (1) 241-254
  • 75 Pohlenz P, Blessmann M, Blake F, Gbara A, Schmelzle R, Heiland M. Major mandibular surgical procedures as an indication for intraoperative imaging. J Oral Maxillofac Surg 2008; 66 (2) 324-329
  • 76 Korbmacher H, Kahl-Nieke B, Schöllchen M, Heiland M. Value of two cone-beam computed tomography systems from an orthodontic point of view. J Orofac Orthop 2007; 68 (4) 278-289
  • 77 Barker E, Trimble K, Chan H , et al. Intraoperative use of cone-beam computed tomography in a cadaveric ossified cochlea model. Otolaryngol Head Neck Surg 2009; 140 (5) 697-702
  • 78 Blake FA, Blessmann M, Pohlenz P, Heiland M. A new imaging modality for intraoperative evaluation of sinus floor augmentation. Int J Oral Maxillofac Surg 2008; 37 (2) 183-185
  • 79 Gröbe A, Weber C, Schmelzle R, Heiland M, Klatt J, Pohlenz P. The use of navigation (BrainLAB Vector vision(2)) and intraoperative 3D imaging system (Siemens Arcadis Orbic 3D) in the treatment of gunshot wounds of the maxillofacial region. Oral Maxillofac Surg 2009; 13 (3) 153-158
  • 80 Hamming NM, Daly MJ, Irish JC, Siewerdsen JH. Effect of fiducial configuration on target registration error in intraoperative cone-beam CT guidance of head and neck surgery. Conf Proc IEEE Eng Med Biol Soc 2008; 2008: 3643-3648
  • 81 Mischkowski RA, Zinser MJ, Ritter L, Neugebauer J, Keeve E, Zöller JE. Intraoperative navigation in the maxillofacial area based on 3D imaging obtained by a cone-beam device. Int J Oral Maxillofac Surg 2007; 36 (8) 687-694
  • 82 Pohlenz P, Blake F, Blessmann M , et al. Intraoperative cone-beam computed tomography in oral and maxillofacial surgery using a C-arm prototype: first clinical experiences after treatment of zygomaticomaxillary complex fractures. J Oral Maxillofac Surg 2009; 67 (3) 515-521
  • 83 Pohlenz P, Blessmann M, Blake F, Heinrich S, Schmelzle R, Heiland M. Clinical indications and perspectives for intraoperative cone-beam computed tomography in oral and maxillofacial surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007; 103 (3) 412-417
  • 84 Rafferty MA, Siewerdsen JH, Chan Y , et al. Intraoperative cone-beam CT for guidance of temporal bone surgery. Otolaryngol Head Neck Surg 2006; 134 (5) 801-808
  • 85 Rafferty MA, Siewerdsen JH, Chan Y , et al. Investigation of C-arm cone-beam CT-guided surgery of the frontal recess. Laryngoscope 2005; 115 (12) 2138-2143
  • 86 Zizelmann C, Gellrich NC, Metzger MC, Schoen R, Schmelzeisen R, Schramm A. Computer-assisted reconstruction of orbital floor based on cone beam tomography. Br J Oral Maxillofac Surg 2007; 45 (1) 79-80
  • 87 Feuerstein M, Mussack T, Heining SM, Navab N. Intraoperative laparoscope augmentation for port placement and resection planning in minimally invasive liver resection. IEEE Trans Med Imaging 2008; 27 (3) 355-369
  • 88 Hamming NM, Daly MJ, Irish JC, Siewerdsen JH. Automatic image-to-world registration based on x-ray projections in cone-beam CT-guided interventions. Med Phys 2009; 36 (5) 1800-1812
  • 89 Teber D, Guven S, Simpfendörfer T , et al. Augmented reality: a new tool to improve surgical accuracy during laparoscopic partial nephrectomy? Preliminary in vitro and in vivo results. Eur Urol 2009; 56 (2) 332-338
  • 90 Aschendorff A, Maier W, Jaekel K , et al. Radiologically assisted navigation in cochlear implantation for X-linked deafness malformation. Cochlear Implants Int 2009; 10 (Suppl. 01) 14-18
  • 91 Cruz OA, Lynch JT, Roper-Hall G. Management of vertical ocular deviations secondary to restrictive conditions. Am Orthopt J 2011; 61: 19-22
  • 92 Loba P, Kozakiewicz M, Nowakowska O, Omulecki W, Broniarczyk-Loba A. Management of persistent diplopia after surgical repair of orbital fractures. J AAPOS 2012; 16 (6) 548-553
  • 93 Lagrèze W. Treatment of optic neuropathies—state of the art [in German]. Klin Monatsbl Augenheilkd 2009; 226 (11) 875-880
  • 94 Probst FA, Mast G, Ermer M , et al. MatrixMANDIBLE preformed reconstruction plates—a two-year two-institution experience in 71 patients. J Oral Maxillofac Surg 2012; 70 (11) e657-e666
  • 95 Metzger MC, Vogel M, Hohlweg-Majert B , et al. Anatomical shape analysis of the mandible in Caucasian and Chinese for the production of preformed mandible reconstruction plates. J Craniomaxillofac Surg 2011; 39 (6) 393-400
  • 96 Metzger MC, Schön R, Schmelzeisen R. Preformed titanium meshes: a new standard?. Skull Base 2007; 17 (4) 269-272