Semin Neurol 2015; 35(01): e14-e22
DOI: 10.1055/s-0035-1549095
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Mechanisms of Traumatic Brain Injury

Derek Bauer
1   Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee
,
Monica L. Tung
2   Department of Physical Medicine and Rehabilitation, Uniformed Services University, Bethesda, Maryland
,
Jack W. Tsao
1   Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee
2   Department of Physical Medicine and Rehabilitation, Uniformed Services University, Bethesda, Maryland
3   Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
4   US Navy Bureau of Medicine and Surgery, Washington, DC
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
27. März 2015 (online)

Abstract

The authors describe the mechanisms of traumatic brain injury (TBI), examining in depth the characteristics of closed head, penetrating, and blast-related TBI. Events on a structural as well as cellular level are reviewed. Blast-related brain injury, in particular, affects military service members preferentially, but is also relevant in cases of industrial accidents as well as terrorist events.

 
  • References

  • 1 Shaw NA. The neurophysiology of concussion. Prog Neurobiol 2002; 67 (4) 281-344
  • 2 Stemper BD, Pintar FA. Biomechanics of concussion. Prog Neurol Surg 2014; 28: 14-27
  • 3 Thomas LM, Roberts VL, Gurdjian ES. Experimental intracranial pressure gradients in the human skull. J Neurol Neurosurg Psychiatry 1966; 29 (5) 404-411
  • 4 Thibault LE, Meaney DF, Anderson BJ, Marmarou A. Biomechanical aspects of a fluid percussion model of brain injury. J Neurotrauma 1992; 9 (4) 311-322
  • 5 Ommaya AK, Gennarelli TA. Cerebral concussion and traumatic unconsciousness. Correlation of experimental and clinical observations of blunt head injuries. Brain 1974; 97 (4) 633-654
  • 6 Zhang J, Yoganandan N, Pintar FA, Gennarelli TA. Role of translational and rotational accelerations on brain strain in lateral head impact. Biomed Sci Instrum 2006; 42: 501-506
  • 7 Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP. Diffuse axonal injury and traumatic coma in the primate. Ann Neurol 1982; 12 (6) 564-574
  • 8 Zhang L, Yang KH, King AI. Comparison of brain responses between frontal and lateral impacts by finite element modeling. J Neurotrauma 2001; 18 (1) 21-30
  • 9 McIntosh AS, Patton DA, Fréchède B, Pierré PA, Ferry E, Barthels T. The biomechanics of concussion in unhelmeted football players in Australia: a case-control study. BMJ Open 2014; 4 (5) e005078
  • 10 Prins M, Greco T, Alexander D, Giza CC. The pathophysiology of traumatic brain injury at a glance. Dis Model Mech 2013; 6 (6) 1307-1315
  • 11 Katayama Y, Becker DP, Tamura T, Hovda DA. Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg 1990; 73 (6) 889-900
  • 12 Giza CC, Hovda DA. The neurometabolic cascade of concussion. J Athl Train 2001; 36 (3) 228-235
  • 13 Kofuji P, Newman EA. Potassium buffering in the central nervous system. Neuroscience 2004; 129 (4) 1045-1056
  • 14 Kawamata T, Katayama Y, Hovda DA, Yoshino A, Becker DP. Lactate accumulation following concussive brain injury: the role of ionic fluxes induced by excitatory amino acids. Brain Res 1995; 674 (2) 196-204
  • 15 Yoshino A, Hovda DA, Kawamata T, Katayama Y, Becker DP. Dynamic changes in local cerebral glucose utilization following cerebral conclusion in rats: evidence of a hyper- and subsequent hypometabolic state. Brain Res 1991; 561 (1) 106-119
  • 16 Howarth C, Gleeson P, Attwell D. Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab 2012; 32 (7) 1222-1232
  • 17 Nadler V, Biegon A, Beit-Yannai E, Adamchik J, Shohami E. 45Ca accumulation in rat brain after closed head injury; attenuation by the novel neuroprotective agent HU-211. Brain Res 1995; 685 (1-2) 1-11
  • 18 Samii A, Badie H, Fu K, Luther RR, Hovda DA. Effects of an N-type calcium channel antagonist (SNX 111; Ziconotide) on calcium-45 accumulation following fluid-percussion injury. J Neurotrauma 1999; 16 (10) 879-892
  • 19 Osteen CL, Giza CC, Hovda DA. Injury-induced alterations in N-methyl-D-aspartate receptor subunit composition contribute to prolonged 45calcium accumulation following lateral fluid percussion. Neuroscience 2004; 128 (2) 305-322
  • 20 Xiong Y, Peterson PL, Verweij BH, Vinas FC, Muizelaar JP, Lee CP. Mitochondrial dysfunction after experimental traumatic brain injury: combined efficacy of SNX-111 and U-101033E. J Neurotrauma 1998; 15 (7) 531-544
  • 21 Verweij BH, Muizelaar JP, Vinas FC, Peterson PL, Xiong Y, Lee CP. Impaired cerebral mitochondrial function after traumatic brain injury in humans. J Neurosurg 2000; 93 (5) 815-820
  • 22 Shalbuyeva N, Brustovetsky T, Bolshakov A, Brustovetsky N. Calcium-dependent spontaneously reversible remodeling of brain mitochondria. J Biol Chem 2006; 281 (49) 37547-37558
  • 23 Weber JT. Altered calcium signaling following traumatic brain injury. Front Pharmacol 2012; 3: 60
  • 24 Heath DL, Vink R. Traumatic brain axonal injury produces sustained decline in intracellular free magnesium concentration. Brain Res 1996; 738 (1) 150-153
  • 25 Heath DL, Vink R. Concentration of brain free magnesium following severe brain injury correlates with neurologic motor outcome. J Clin Neurosci 1999; 6 (6) 505-509
  • 26 Temkin NR, Anderson GD, Winn HR , et al. Magnesium sulfate for neuroprotection after traumatic brain injury: a randomised controlled trial. Lancet Neurol 2007; 6 (1) 29-38
  • 27 Yamakami I, McIntosh TK. Effects of traumatic brain injury on regional cerebral blood flow in rats as measured with radiolabeled microspheres. J Cereb Blood Flow Metab 1989; 9 (1) 117-124
  • 28 Yamakami I, McIntosh TK. Alterations in regional cerebral blood flow following brain injury in the rat. J Cereb Blood Flow Metab 1991; 11 (4) 655-660
  • 29 Bouma GJ, Muizelaar JP, Stringer WA, Choi SC, Fatouros P, Young HF. Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography. J Neurosurg 1992; 77 (3) 360-368
  • 30 Hovda DA, Yoshino A, Kawamata T, Katayama Y, Becker DP. Diffuse prolonged depression of cerebral oxidative metabolism following concussive brain injury in the rat: a cytochrome oxidase histochemistry study. Brain Res 1991; 567 (1) 1-10
  • 31 Maxwell WL, Domleo A, McColl G, Jafari SS, Graham DI. Post-acute alterations in the axonal cytoskeleton after traumatic axonal injury. J Neurotrauma 2003; 20 (2) 151-168
  • 32 Lewén A, Fujimura M, Sugawara T, Matz P, Copin JC, Chan PH. Oxidative stress-dependent release of mitochondrial cytochrome c after traumatic brain injury. J Cereb Blood Flow Metab 2001; 21 (8) 914-920
  • 33 Balan IS, Saladino AJ, Aarabi B , et al. Cellular alterations in human traumatic brain injury: changes in mitochondrial morphology reflect regional levels of injury severity. J Neurotrauma 2013; 30 (5) 367-381
  • 34 Bergsneider M, Hovda DA, Shalmon E , et al. Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg 1997; 86 (2) 241-251
  • 35 Marklund N, Salci K, Ronquist G, Hillered L. Energy metabolic changes in the early post-injury period following traumatic brain injury in rats. Neurochem Res 2006; 31 (8) 1085-1093
  • 36 Hattori N, Huang SC, Wu HM , et al. Acute changes in regional cerebral (18)F-FDG kinetics in patients with traumatic brain injury. J Nucl Med 2004; 45 (5) 775-783
  • 37 Hattori N, Huang SC, Wu HM , et al. Correlation of regional metabolic rates of glucose with Glasgow Coma Scale after traumatic brain injury. J Nucl Med 2003; 44 (11) 1709-1716
  • 38 Wu HM, Huang SC, Hattori N , et al. Selective metabolic reduction in gray matter acutely following human traumatic brain injury. J Neurotrauma 2004; 21 (2) 149-161
  • 39 Vespa P, Bergsneider M, Hattori N , et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab 2005; 25 (6) 763-774
  • 40 Prins ML, Alexander D, Giza CC, Hovda DA. Repeated mild traumatic brain injury: mechanisms of cerebral vulnerability. J Neurotrauma 2013; 30 (1) 30-38
  • 41 Wetjen NM, Pichelmann MA, Atkinson JL. Second impact syndrome: concussion and second injury brain complications. J Am Coll Surg 2010; 211 (4) 553-557
  • 42 Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K. A new model of diffuse brain injury in rats. Part I: pathophysiology and biomechanics. J Neurosurg 1994; 80 (2) 291-300
  • 43 Nilsson P, Ronne-Engström E, Flink R, Ungerstedt U, Carlson H, Hillered L. Epileptic seizure activity in the acute phase following cortical impact trauma in rat. Brain Res 1994; 637 (1-2) 227-232
  • 44 Dow RS, Ulett G, Raaf J. Electroencephalographic studies immediately following head injury. Am J Psychiatry 1944; 101: 174-183
  • 45 Nuwer MR, Hovda DA, Schrader LM, Vespa PM. Routine and quantitative EEG in mild traumatic brain injury. Clin Neurophysiol 2005; 116 (9) 2001-2025
  • 46 Zafonte RD, Bagiella E, Ansel BM , et al. Effect of citicoline on functional and cognitive status among patients with traumatic brain injury: Citicoline Brain Injury Treatment Trial (COBRIT). JAMA 2012; 308 (19) 1993-2000
  • 47 Cooper DJ, Rosenfeld JV, Murray L , et al; DECRA Trial Investigators; Australian and New Zealand Intensive Care Society Clinical Trials Group. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med 2011; 364 (16) 1493-1502
  • 48 Champion HR, Holcomb JB, Young LA. Injuries from explosions: physics, biophysics, pathology, and required research focus. J Trauma 2009; 66 (5) 1468-1477 , discussion 1477
  • 49 Bell RS, Vo AH, Neal CJ , et al. Military traumatic brain and spinal column injury: a 5-year study of the impact blast and other military grade weaponry on the central nervous system. J Trauma 2009; ; 66 (4, Suppl): S104-S111
  • 50 Cernak I, Noble-Haeusslein LJ. Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J Cereb Blood Flow Metab 2010; 30 (2) 255-266
  • 51 Belanger HG, Kretzmer T, Yoash-Gantz R, Pickett T, Tupler LA. Cognitive sequelae of blast-related versus other mechanisms of brain trauma. J Int Neuropsychol Soc 2009; 15 (1) 1-8
  • 52 Warden D. Military TBI during the Iraq and Afghanistan wars. J Head Trauma Rehabil 2006; 21 (5) 398-402
  • 53 Risdall JE, Menon DK. Traumatic brain injury. Philos Trans R Soc Lond B Biol Sci 2011; 366 (1562) 241-250
  • 54 DePalma RG, Burris DG, Champion HR, Hodgson MJ. Blast injuries. N Engl J Med 2005; 352 (13) 1335-1342
  • 55 Kamnaksh A, Kovesdi E, Kwon S-K , et al. Factors affecting blast traumatic brain injury. J Neurotrauma 2011; 28 (10) 2145-2153
  • 56 Wolf SJ, Bebarta VS, Bonnett CJ, Pons PT, Cantrill SV. Blast injuries. Lancet 2009; 374 (9687) 405-415
  • 57 Magnuson J, Leonessa F, Ling GS. Neuropathology of explosive blast traumatic brain injury. Curr Neurol Neurosci Rep 2012; 12 (5) 570-579
  • 58 Kobeissy F, Mondello S, Tümer N , et al. Assessing neuro-systemic & behavioral components in the pathophysiology of blast-related brain injury. Front Neurol 2013; 4: 186
  • 59 Ling GS, Hawley J, Grimes J , et al. Traumatic brain injury in modern war. Paper presented at: SPIE Defense, Security, and Sensing 2013; April 29–May 3, 2013; Baltimore, MD
  • 60 Wang Y, Wei Y, Oguntayo S , et al. Tightly coupled repetitive blast-induced traumatic brain injury: development and characterization in mice. J Neurotrauma 2011; 28 (10) 2171-2183
  • 61 Koliatsos VE, Cernak I, Xu L , et al. A mouse model of blast injury to brain: initial pathological, neuropathological, and behavioral characterization. J Neuropathol Exp Neurol 2011; 70 (5) 399-416
  • 62 Bass CR, Panzer MB, Rafaels KA, Wood G, Shridharani J, Capehart B. Brain injuries from blast. Ann Biomed Eng 2012; 40 (1) 185-202
  • 63 Chen Y, Huang W. Non-impact, blast-induced mild TBI and PTSD: concepts and caveats. Brain Inj 2011; 25 (7–8) 641-650
  • 64 Taber K, Hurley R, Haswell C , et al. White matter compromise in veterans exposed to primary blast forces. J Head Trauma Rehabil 2014;
  • 65 Rafaels KA, Bass CR, Panzer MB , et al. Brain injury risk from primary blast. J Trauma Acute Care Surg 2012; 73 (4) 895-901
  • 66 Cernak I. The importance of systemic response in the pathobiology of blast-induced neurotrauma. Front Neurol 2010; 1: 151
  • 67 Mayorga MA. The pathology of primary blast overpressure injury. Toxicology 1997; 121 (1) 17-28
  • 68 Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol 2008; 7 (8) 728-741
  • 69 DeWitt DS, Prough DS. Blast-induced brain injury and posttraumatic hypotension and hypoxemia. J Neurotrauma 2009; 26 (6) 877-887
  • 70 Armonda RA, Bell RS, Vo AH , et al. Wartime traumatic cerebral vasospasm: recent review of combat casualties. Neurosurgery 2006; 59 (6) 1215-1225 , discussion 1225
  • 71 Yeoh S, Bell ED, Monson KL. Distribution of blood-brain barrier disruption in primary blast injury. Ann Biomed Eng 2013; 41 (10) 2206-2214
  • 72 Davenport ND, Lim KO, Armstrong MT, Sponheim SR. Diffuse and spatially variable white matter disruptions are associated with blast-related mild traumatic brain injury. Neuroimage 2012; 59 (3) 2017-2024
  • 73 Garman RH, Jenkins LW, Switzer III RC , et al. Blast exposure in rats with body shielding is characterized primarily by diffuse axonal injury. J Neurotrauma 2011; 28 (6) 947-959
  • 74 Peskind ER, Petrie EC, Cross DJ , et al. Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq war Veterans with persistent post-concussive symptoms. Neuroimage 2011; 54 (Suppl. 01) S76-S82
  • 75 Elder GA, Cristian A. Blast-related mild traumatic brain injury: mechanisms of injury and impact on clinical care. Mt Sinai J Med 2009; 76 (2) 111-118
  • 76 Tweedie D, Rachmany L, Rubovitch V , et al. Changes in mouse cognition and hippocampal gene expression observed in a mild physical- and blast-traumatic brain injury. Neurobiol Dis 2013; 54: 1-11
  • 77 Kochanek PM, Dixon CE, Shellington DK , et al. Screening of biochemical and molecular mechanisms of secondary injury and repair in the brain after experimental blast-induced traumatic brain injury in rats. J Neurotrauma 2013; 30 (11) 920-937
  • 78 Pun PB, Kan EM, Salim A , et al. Low level primary blast injury in rodent brain. Front Neurol 2011; 2: 19
  • 79 Abdul-Muneer PM, Schuetz H, Wang F , et al. Induction of oxidative and nitrosative damage leads to cerebrovascular inflammation in an animal model of mild traumatic brain injury induced by primary blast. Free Radic Biol Med 2013; 60: 282-291
  • 80 Duckworth JL, Grimes J, Ling GS. Pathophysiology of battlefield associated traumatic brain injury. Pathophysiology 2013; 20 (1) 23-30
  • 81 Hernandez-Ontiveros DG, Tajiri N, Acosta S, Giunta B, Tan J, Borlongan CV. Microglia activation as a biomarker for traumatic brain injury. Front Neurol 2013; 4: 30
  • 82 Arun P, Abu-Taleb R, Oguntayo S , et al. Distinct patterns of expression of traumatic brain injury biomarkers after blast exposure: role of compromised cell membrane integrity. Neurosci Lett 2013; 552: 87-91
  • 83 Cho HJ, Sajja VSSS, Vandevord PJ, Lee YW. Blast induces oxidative stress, inflammation, neuronal loss and subsequent short-term memory impairment in rats. Neuroscience 2013; 253: 9-20
  • 84 Valiyaveettil M, Alamneh Y, Wang Y , et al. Contribution of systemic factors in the pathophysiology of repeated blast-induced neurotrauma. Neurosci Lett 2013; 539: 1-6
  • 85 Stocker RP, Cieply MA, Paul B , et al. Combat-related blast exposure and traumatic brain injury influence brain glucose metabolism during REM sleep in military veterans. Neuroimage 2014; 99: 207-214
  • 86 Marion DW, Curley KC, Schwab K, Hicks RR ; mTBI Diagnostics Workgroup. Proceedings of the military mTBI Diagnostics Workshop, St. Pete Beach, August 2010. J Neurotrauma 2011; 28 (4) 517-526
  • 87 Vagnozzi R, Signoretti S, Cristofori L , et al. Assessment of metabolic brain damage and recovery following mild traumatic brain injury: a multicentre, proton magnetic resonance spectroscopic study in concussed patients. Brain 2010; 133 (11) 3232-3242
  • 88 Barach E, Tomlanovich M, Nowak R. Ballistics: a pathophysiologic examination of the wounding mechanisms of firearms: Part I. J Trauma 1986; 26 (3) 225-235
  • 89 Williams AJ, Hartings JA, Lu X-CM, Rolli ML, Dave JR, Tortella FC. Characterization of a new rat model of penetrating ballistic brain injury. J Neurotrauma 2005; 22 (2) 313-331
  • 90 Zoltewicz JS, Mondello S, Yang B , et al. Biomarkers track damage after graded injury severity in a rat model of penetrating brain injury. J Neurotrauma 2013; 30 (13) 1161-1169
  • 91 Neal CJ, Lee EY, Gyorgy A, Ecklund JM, Agoston DV, Ling GS. Effect of penetrating brain injury on aquaporin-4 expression using a rat model. J Neurotrauma 2007; 24 (10) 1609-1617
  • 92 Williams AJ, Hartings JA, Lu X-CM, Rolli ML, Tortella FC. Penetrating ballistic-like brain injury in the rat: differential time courses of hemorrhage, cell death, inflammation, and remote degeneration. J Neurotrauma 2006; 23 (12) 1828-1846
  • 93 Rostami E, Davidsson J, Gyorgy A, Agoston DV, Risling M, Bellander B-M. The terminal pathway of the complement system is activated in focal penetrating but not in mild diffuse traumatic brain injury. J Neurotrauma 2013; 30 (23) 1954-1965
  • 94 Grossman R, Paden CM, Fry PA, Rhodes RS, Biegon A. Persistent region-dependent neuroinflammation, NMDA receptor loss and atrophy in an animal model of penetrating brain injury. Future Neurol 2012; 7 (3) 329-339