Dialyse aktuell 2015; 19(3): 146-153
DOI: 10.1055/s-0035-1551559
Nephrologie
© Georg Thieme Verlag Stuttgart · New York

Das akute Nierenversagen – Intensivmedizinische Aspekte

Acute kidney injury – Aspects of intensive care
Yana Suttmann
1   Abteilung für Nephrologie, Klinikum rechts der Isar der Technischen Universität München (Leiter: Univ.-Prof. Dr. Dr. h.c. Uwe Heemann)
,
Claudius Küchle
1   Abteilung für Nephrologie, Klinikum rechts der Isar der Technischen Universität München (Leiter: Univ.-Prof. Dr. Dr. h.c. Uwe Heemann)
,
Uwe Heemann
1   Abteilung für Nephrologie, Klinikum rechts der Isar der Technischen Universität München (Leiter: Univ.-Prof. Dr. Dr. h.c. Uwe Heemann)
› Author Affiliations
Further Information

Publication History

Publication Date:
17 April 2015 (online)

Das akute Nierenversagen ist charakterisiert durch die Abnahme der Nierenfunktion über Stunden oder Tage, was immer zur Retention harnpflichtiger Substanzen, häufig auch zur Störung der Elektrolythomöostase und zur Abnahme der Urinausscheidung führt. Es kann die Folge prä-, post- und intrarenaler Störungen sein, wobei die Grenzen häufig unscharf sind. Im Vergleich zur Allgemeinbevölkerung ist die Inzidenz des akuten Nierenversagens durch die Kumulation schädigender Ereignisse bei hospitalisierten Patienten, besonders auf Intensivstationen, erhöht. Bei diesen Patienten ist die Ursache häufig extrarenal, z. B. bei einer Sepsis mit Multiorganversagen, als Folge einer Minderperfusion oder nach der Applikation nephrotoxischer Medikamente. Die frühe Diagnose und das rasche Beheben der potenziellen Ursachen sind wichtig für die Prognose der Patienten, da ein protrahierter und höhergradiger Nieren-Funktions-Verlust direkt mit einer erhöhten Morbidität und Mortalität einhergeht. Aufgrund der unterschiedlichen und z. T. unverstandenen Ursachen des Nierenversagens gibt es keine einheitliche Therapie für das akute Nierenversagen, dafür aber verschiedene supportive Maßnahmen bis hin zur Nierenersatztherapie, die, wenn sie notwendig wird, früh sowie in einer ausreichenden Dosis und Biokompatibilität erfolgen muss. Entscheidend ist der Versuch, die Nephrotoxizität der medizinischen Maßnahmen zu minimieren und ein akutes Nierenversagen zu verhindern. Bei dem größten Teil der Patienten ohne vorbestehende Niereninsuffizienz kann im Verlauf eine Restitution der Nierenfunktion erreicht werden. Ein erhöhtes Risiko für das Entwickeln einer chronischen Niereninsuffizienz bleibt bei diesen Patienten aber bestehen.

Acute kidney injury (AKI) is characterized by a rapid decline of renal function within hours or days, generally associated with azotaemia, electrolyte disorders and decreased urinary output. It might be caused by pre-renal, intrinsic or post-renal disorders or a combination of these. In comparison to the outpatient population, AKI is more common in hospitalized and especially in critically ill patients, due to the accumulation of multiple disorders that can affect the kidney. In these patients, it is most frequently secondary to extrarenal events such as sepsis with multi-organ damage, a result of decreased organ perfusion or application of nephrotoxic drugs. The early detection and elimination of the cause or trigger for the acute renal failure is of utmost importance for the patient outcome, as a longer and more severe loss of renal function is directly associated with an increased mortality and long term morbidity. Because of the multitude of the renal disturbances which are not yet completely understood, there is no specific therapy for the acute kidney injury, but multiple supportive measures including renal replacement therapy. In cases where such a therapy is needed, it has to be provided early in the course of AKI and sufficient in dose and biocompatibility. Nevertheless, it is most important to try to minimize nephrotoxicity of medical measures and interventions in order to prevent the development of kidney injury. Most patients without chronic kidney disease in their history who survive their acute illness typically recover to dialysis independency and a sufficient renal function. However, they are at an increased risk for the subsequent development of chronic renal failure.

 
  • Literatur

  • 1 Bellomo R, Ronco C, Kellum JA et al. Acute Dialysis Quality Initiative workgroup. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 2004; 8
  • 2 Mehta RL, Kellum JA, Shah SV et al. Acute Kidney Injury Network. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 2007; 11
  • 3 KDIGO AKI Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int 2012; 2 (Suppl. 01) 1-138
  • 4 Hoste EA, Clermont G, Kersten A et al. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care 2006; 10
  • 5 Gallagher M, Cass A, Bellomo R et al. POST-RENAL Study Investigators and the ANZICS Clinical Trials Group. Long-term survival and dialysis dependency following acute kidney injury in intensive care: extended follow-up of a randomized controlled trial. PLoS Med 2014; 11
  • 6 De Backer D, Orbegozo Cortes D, Donadello K, Vincent JL. Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock. Virulence 2014; 5: 73-79
  • 7 De Backer D, Creteur J, Preiser JC et al. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 2002; 166: 98-104
  • 8 Chvojka J, Sýkora R, Karvunidis T et al. New developments in septic acute kidney injury. Physiol Res 2010; 59: 859-869
  • 9 Schädler D, Porzelius C, Jörres A et al. A multicenter randomized controlled study of an extracorporeal cytokine hemadsorption device in septic patients. Crit Care 2013; 17 (Suppl. 02)
  • 10 Bezemer R, Bartels SA, Bakker J, Ince C. Clinical review: clinical imaging of the sublingual microcirculation in the critically ill – where do we stand?. Crit Care 2012; 16: 224-224
  • 11 Dünser MW, Takala J, Brunauer A, Bakker J. Re-thinking resuscitation: leaving blood pressure cosmetics behind and moving forward to permissive hypotension and a tissue perfusion-based approach. Crit Care 2013; 17: 326-326
  • 12 Subramanian S, Yilmaz M, Rehman A et al. Liberal vs. conservative vasopressor use to maintain mean arterial blood pressure during resuscitation of septic shock: an observational study. Intensive Care Med 2008; 34: 157-162
  • 13 Paparella D, Guida P, Mazzei V et al. Hemoglobin and renal replacement therapy after cardiopulmonary bypass surgery: a predictive score from the Cardiac Surgery Registry of Puglia. Int J Cardiol 2014; 176: 866-873
  • 14 Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin. S3-Leitlinie „Intravasale Volumentherapie beim Erwachsenen“. Stand 31.07.2014
  • 15 Wiedermann CJ, Wiedermann W, Joannidis M. Hypoalbuminemia and acute kidney injury: a meta-analysis of observational clinical studies. Intensive Care Med 2010; 36: 1657-1665
  • 16 Payen D, de Pont AC, Sakr Y et al. Sepsis Occurrence in Acutely Ill Patients (SOAP) Investigators. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care 2008; 12
  • 17 Sanjeevani S, Pruthi S, Kalra S et al. Role of neutrophil gelatinase-associated lipocalin for early detection of acute kidney injury. Int J Crit Illn Inj Sci 2014; 4: 223-228
  • 18 James MT, Wald R, Bell CM et al. Weekend hospital admission, acute kidney injury, and mortality. J Am Soc Nephrol 2010; 21: 845-851
  • 19 Karvellas CJ, Farhat MR, Sajjad I et al. A comparison of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury: a systematic review and meta-analysis. Crit Care 2011; 15
  • 20 Leite TT, Macedo E, Pereira SM et al. Timing of renal replacement therapy initiation by AKIN classification system. Crit Care 2013; 17
  • 21 RENAL Replacement Therapy Study Investigators. Bellomo R, Cass A, Cole L et al. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med 2009; 361: 1627-1638
  • 22 VA/NIH Acute Renal Failure Trial Network. Palevsky PM, Zhang JH, O'Connor TZ et al. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med 2008; 359: 7-20
  • 23 Prowle JR, Schneider A, Bellomo R. Clinical review: Optimal dose of continuous renal replacement therapy in acute kidney injury. Crit Care 2011; 15: 207-207
  • 24 Vinsonneau C, Camus C, Combes A et al. Hemodiafe Study Group. Continuous venovenous haemodiafiltration versus intermittent haemodialysis for acute renal failure in patients with multiple-organ dysfunction syndrome: a multicentre randomised trial. Lancet 2006; 368: 379-385
  • 25 Schiffl H, Lang SM, König A et al. Biocompatible membranes in acute renal failure: prospective case-controlled study. Lancet 1994; 344: 570-572
  • 26 Alonso A, Lau J, Jaber BL. Biocompatible hemodialysis membranes for acute renal failure. Cochrane Database Syst Rev CD 005283 2008; 1
  • 27 Schilder L, Nurmohamed SA, Bosch FH et al. CASH study group. Citrate anticoagulation versus systemic heparinisation in continuous venovenous hemofiltration in critically ill patients with acute kidney injury: a multi-center randomized clinical trial. Crit Care 2014; 18: 472-472
  • 28 Oudemans-van Straaten HM. Citrate anticoagulation for continuous renal replacement therapy in the critically ill. Blood Purif 2010; 29: 191-196