Semin Neurol 2015; 35(03): 269-276
DOI: 10.1055/s-0035-1552616
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Epilepsy in Tuberous Sclerosis: Phenotypes, Mechanisms, and Treatments

Anurag Saxena
1   Division of Cancer and Genetics, Cardiff University School of Medicine, Institute of Medical Genetics, Cardiff, United Kingdom
,
Julian R. Sampson
1   Division of Cancer and Genetics, Cardiff University School of Medicine, Institute of Medical Genetics, Cardiff, United Kingdom
› Author Affiliations
Further Information

Publication History

Publication Date:
10 June 2015 (online)

Abstract

Epilepsy affects 75% to 90% of people with tuberous sclerosis, a multisystem genetic disorder. Although seizures can occur for the first time at any age, onset in infancy or childhood is usual. Around 30% of patients present with infantile spasms that often respond well to treatment with vigabatrin. Later seizures may occur as specific patterns, such as in Lennox–Gastaut syndrome, or with combinations of seizures including focal and multifocal seizures, and drop attacks. Most patients have two or more seizure types. Seizure control using current antiepileptic drugs is often unsatisfactory, leading to frequent polypharmacy. Epilepsy surgery has a place in the management of some patients. Mutations in the TSC1 and TSC2 genes that cause tuberous sclerosis lead to hyperactivation of signaling via the mammalian target of rapamycin complex 1 (mTORC1). Inhibitors of mTORC1 have recently been shown to be effective treatments for some manifestations of tuberous sclerosis; they are now being assessed as potential novel antiepileptic drugs in tuberous sclerosis and related disorders.

 
  • References

  • 1 Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med 2006; 355 (13) 1345-1356
  • 2 European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 1993; 75 (7) 1305-1315
  • 3 van Slegtenhorst M, de Hoogt R, Hermans C , et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 1997; 277 (5327) 805-808
  • 4 Dabora SL, Jozwiak S, Franz DN , et al. Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 2001; 68 (1) 64-80
  • 5 Sancak O, Nellist M, Goedbloed M , et al. Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype—phenotype correlations and comparison of diagnostic DNA techniques in Tuberous Sclerosis Complex. Eur J Hum Genet 2005; 13 (6) 731-741
  • 6 Wang S, Fallah A. Optimal management of seizures associated with tuberous sclerosis complex: current and emerging options. Neuropsychiatr Dis Treat 2014; 10: 2021-2030
  • 7 Lewis JC, Thomas HV, Murphy KC, Sampson JR. Genotype and psychological phenotype in tuberous sclerosis. J Med Genet 2004; 41 (3) 203-207
  • 8 Northrup H, Krueger DA ; International Tuberous Sclerosis Complex Consensus Group. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol 2013; 49 (4) 243-254
  • 9 Bissler JJ, Kingswood JC. Renal angiomyolipomata. Kidney Int 2004; 66 (3) 924-934
  • 10 Sampson JR, Maheshwar MM, Aspinwall R , et al. Renal cystic disease in tuberous sclerosis: role of the polycystic kidney disease 1 gene. Am J Hum Genet 1997; 61 (4) 843-851
  • 11 Bosi G, Lintermans JP, Pellegrino PA, Svaluto-Moreolo G, Vliers A. The natural history of cardiac rhabdomyoma with and without tuberous sclerosis. Acta Paediatr 1996; 85 (8) 928-931
  • 12 McCormack FX, Inoue Y, Moss J , et al. Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med 2011; 364 (17) 1595-1606
  • 13 Hunt A. Tuberous sclerosis: a survey of 97 cases. III: Family aspects. Dev Med Child Neurol 1983; 25 (3) 353-357
  • 14 Webb DW, Fryer AE, Osborne JP. On the incidence of fits and mental retardation in tuberous sclerosis. J Med Genet 1991; 28 (6) 395-397
  • 15 Thiele EA. Managing epilepsy in tuberous sclerosis complex. J Child Neurol 2004; 19 (9) 680-686
  • 16 de Vries PJ, Whittemore VH, Leclezio L , et al. Tuberous sclerosis associated neuropsychiatric disorders (TAND) and the TAND Checklist. Pediatr Neurol 2015; 52 (1) 25-35
  • 17 Leclezio L, Jansen A, Whittemore VH, de Vries PJ. Pilot validation of the tuberous sclerosis-associated neuropsychiatric disorders (TAND) checklist. Pediatr Neurol 2015; 52 (1) 16-24
  • 18 Prabowo AS, Anink JJ, Lammens M , et al. Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation. Brain Pathol 2013; 23 (1) 45-59
  • 19 Tsai V, Parker WE, Orlova KA , et al. Fetal brain mTOR signaling activation in tuberous sclerosis complex. Cereb Cortex 2014; 24 (2) 315-327
  • 20 Park SH, Pepkowitz SH, Kerfoot C , et al. Tuberous sclerosis in a 20-week gestation fetus: immunohistochemical study. Acta Neuropathol 1997; 94 (2) 180-186
  • 21 Luat AF, Makki M, Chugani HT. Neuroimaging in tuberous sclerosis complex. Curr Opin Neurol 2007; 20 (2) 142-150
  • 22 Braffman BH, Bilaniuk LT, Naidich TP , et al. MR imaging of tuberous sclerosis: pathogenesis of this phakomatosis, use of gadopentetate dimeglumine, and literature review. Radiology 1992; 183 (1) 227-238
  • 23 Makki MI, Chugani DC, Janisse J, Chugani HT. Characteristics of abnormal diffusivity in normal-appearing white matter investigated with diffusion tensor MR imaging in tuberous sclerosis complex. AJNR Am J Neuroradiol 2007; 28 (9) 1662-1667
  • 24 Arulrajah S, Ertan G, Jordan L , et al. Magnetic resonance imaging and diffusion-weighted imaging of normal-appearing white matter in children and young adults with tuberous sclerosis complex. Neuroradiology 2009; 51 (11) 781-786
  • 25 Peng SS, Lee WT, Wang YH, Huang KM. Cerebral diffusion tensor images in children with tuberous sclerosis: a preliminary report. Pediatr Radiol 2004; 34 (5) 387-392
  • 26 Dibble CC, Elis W, Menon S , et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 2012; 47 (4) 535-546
  • 27 Laplante M, Sabatini DM. Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci 2013; 126 (Pt 8) 1713-1719
  • 28 Yecies JL, Manning BD. mTOR links oncogenic signaling to tumor cell metabolism. J Mol Med (Berl) 2011; 89 (3) 221-228
  • 29 Parkhitko AA, Favorova OO, Khabibullin DI, Anisimov VN, Henske EP. Kinase mTOR: regulation and role in maintenance of cellular homeostasis, tumor development, and aging. Biochemistry (Mosc) 2014; 79 (2) 88-101
  • 30 Au KS, Williams AT, Gambello MJ, Northrup H. Molecular genetic basis of tuberous sclerosis complex: from bench to bedside. J Child Neurol 2004; 19 (9) 699-709
  • 31 Huang J, Manning BD. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 2008; 412 (2) 179-190
  • 32 Kim SG, Buel GR, Blenis J. Nutrient regulation of the mTOR complex 1 signaling pathway. Mol Cells 2013; 35 (6) 463-473
  • 33 Ehninger D, Han S, Shilyansky C , et al. Reversal of learning deficits in a Tsc2+/- mouse model of tuberous sclerosis. Nat Med 2008; 14 (8) 843-848
  • 34 Saxena A, Sampson JR. Phenotypes associated with inherited and developmental somatic mutations in genes encoding mTOR pathway components. Semin Cell Dev Biol 2014; 36: 140-146
  • 35 Tyburczy ME, Wang JA, Li S , et al. Sun exposure causes somatic second-hit mutations and angiofibroma development in tuberous sclerosis complex. Hum Mol Genet 2014; 23 (8) 2023-2029
  • 36 Carbonara C, Longa L, Grosso E , et al. Apparent preferential loss of heterozygosity at TSC2 over TSC1 chromosomal region in tuberous sclerosis hamartomas. Genes Chromosomes Cancer 1996; 15 (1) 18-25
  • 37 Liu J, Reeves C, Michalak Z , et al. Evidence for mTOR pathway activation in a spectrum of epilepsy-associated pathologies. Acta Neuropathol Commun 2014; 2: 71
  • 38 Curatolo P, Verdecchia M, Bombardieri R. Tuberous sclerosis complex: a review of neurological aspects. Eur J Paediatr Neurol 2002; 6 (1) 15-23
  • 39 Curatolo P, Bombardieri R, Verdecchia M, Seri S. Intractable seizures in tuberous sclerosis complex: from molecular pathogenesis to the rationale for treatment. J Child Neurol 2005; 20 (4) 318-325
  • 40 Guzzetta F, Crisafulli A, Isaya Crinó M. Cognitive assessment of infants with West syndrome: how useful is it for diagnosis and prognosis?. Dev Med Child Neurol 1993; 35 (5) 379-387
  • 41 Curatolo P, Seri S, Verdecchia M, Bombardieri R. Infantile spasms in tuberous sclerosis complex. Brain Dev 2001; 23 (7) 502-507
  • 42 Pressler RMBC, Cooper R, Robinson R. Neonatal and Paediatric Clinical Neurophysiology. Amsterdam, The Netherlands: Elsevier; 2007
  • 43 Kinirons P, Cavalleri GL, O'Rourke D , et al. Vigabatrin retinopathy in an Irish cohort: lack of correlation with dose. Epilepsia 2006; 47 (2) 311-317
  • 44 Bolton PF, Park RJ, Higgins JN, Griffiths PD, Pickles A. Neuro-epileptic determinants of autism spectrum disorders in tuberous sclerosis complex. Brain 2002; 125 (Pt 6) 1247-1255
  • 45 Curatolo P, D'Argenzio L, Cerminara C, Bombardieri R. Management of epilepsy in tuberous sclerosis complex. Expert Rev Neurother 2008; 8 (3) 457-467
  • 46 Joinson C, O'Callaghan FJ, Osborne JP, Martyn C, Harris T, Bolton PF. Learning disability and epilepsy in an epidemiological sample of individuals with tuberous sclerosis complex. Psychol Med 2003; 33 (2) 335-344
  • 47 O'Callaghan FJ, Harris T, Joinson C , et al. The relation of infantile spasms, tubers, and intelligence in tuberous sclerosis complex. Arch Dis Child 2004; 89 (6) 530-533
  • 48 Hamano S, Tanaka M, Mochizuki M, Sugiyama N, Eto Y. Long-term follow-up study of West syndrome: differences of outcome among symptomatic etiologies. J Pediatr 2003; 143 (2) 231-235
  • 49 Fukushima K, Inoue Y, Fujiwara T, Yagi K. Long-term follow-up study of West syndrome associated with tuberous sclerosis. Brain Dev 2001; 23 (7) 698-704
  • 50 Lane VW, Samples JM. Tuberous sclerosis: case study of early seizure control and subsequent normal development. J Autism Dev Disord 1984; 14 (4) 423-427
  • 51 Jambaqué I, Chiron C, Dumas C, Mumford J, Dulac O. Mental and behavioural outcome of infantile epilepsy treated by vigabatrin in tuberous sclerosis patients. Epilepsy Res 2000; 38 (2-3) 151-160
  • 52 Aicardi J, Mumford JP, Dumas C, Wood S ; Sabril IS Investigator and Peer Review Groups. Vigabatrin as initial therapy for infantile spasms: a European retrospective survey. Epilepsia 1996; 37 (7) 638-642
  • 53 Hancock EC, Cross JH. Treatment of Lennox-Gastaut syndrome. Cochrane Database Syst Rev 2013; 2: CD003277
  • 54 Chu-Shore CJ, Major P, Camposano S, Muzykewicz D, Thiele EA. The natural history of epilepsy in tuberous sclerosis complex. Epilepsia 2010; 51 (7) 1236-1241
  • 55 Curatolo P. Neurological manifestations of tuberous sclerosis complex. Childs Nerv Syst 1996; 12 (9) 515-521
  • 56 Elliott RE, Carlson C, Kalhorn SP , et al. Refractory epilepsy in tuberous sclerosis: vagus nerve stimulation with or without subsequent resective surgery. Epilepsy Behav 2009; 16 (3) 454-460
  • 57 Vignoli A, La Briola F, Turner K , et al. Epilepsy in TSC: certain etiology does not mean certain prognosis. Epilepsia 2013; 54 (12) 2134-2142
  • 58 Moavero R, Cerminara C, Curatolo P. Epilepsy secondary to tuberous sclerosis: lessons learned and current challenges. Childs Nerv Syst 2010; 26 (11) 1495-1504
  • 59 Krueger DA, Northrup H ; International Tuberous Sclerosis Complex Consensus Group. Tuberous sclerosis complex surveillance and management: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol 2013; 49 (4) 255-265
  • 60 Moeller JJ, Rahey SR, Sadler RM. Lamotrigine-valproic acid combination therapy for medically refractory epilepsy. Epilepsia 2009; 50 (3) 475-479
  • 61 Kaminski RM, Matagne A, Patsalos PN, Klitgaard H. Benefit of combination therapy in epilepsy: a review of the preclinical evidence with levetiracetam. Epilepsia 2009; 50 (3) 387-397
  • 62 Lazarowski A, Lubieniecki F, Camarero S , et al. Multidrug resistance proteins in tuberous sclerosis and refractory epilepsy. Pediatr Neurol 2004; 30 (2) 102-106
  • 63 Romanelli P, Najjar S, Weiner HL, Devinsky O. Epilepsy surgery in tuberous sclerosis: multistage procedures with bilateral or multilobar foci. J Child Neurol 2002; 17 (9) 689-692
  • 64 Arya R, Tenney JR, Horn PS , et al. Long-term outcomes of resective epilepsy surgery after invasive presurgical evaluation in children with tuberous sclerosis complex and bilateral multiple lesions. J Neurosurg Pediatr 2015; 15 (1) 26-33
  • 65 Kawai K, Shimizu H, Yagishita A, Maehara T, Tamagawa K. Clinical outcomes after corpus callosotomy in patients with bihemispheric malformations of cortical development. J Neurosurg 2004; 101 (1, Suppl): 7-15
  • 66 Connolly MB, Hendson G, Steinbok P. Tuberous sclerosis complex: a review of the management of epilepsy with emphasis on surgical aspects. Childs Nerv Syst 2006; 22 (8) 896-908
  • 67 Henry TR. Therapeutic mechanisms of vagus nerve stimulation. Neurology 2002; 59 (6) (Suppl. 04) S3-S14
  • 68 Morris III GL, Mueller WM. Long-term treatment with vagus nerve stimulation in patients with refractory epilepsy. The Vagus Nerve Stimulation Study Group E01-E05. Neurology 1999; 53 (8) 1731-1735
  • 69 Major P, Thiele EA. Vagus nerve stimulation for intractable epilepsy in tuberous sclerosis complex. Epilepsy Behav 2008; 13 (2) 357-360
  • 70 Parain D, Penniello MJ, Berquen P, Delangre T, Billard C, Murphy JV. Vagal nerve stimulation in tuberous sclerosis complex patients. Pediatr Neurol 2001; 25 (3) 213-216
  • 71 Danial NN, Hartman AL, Stafstrom CE, Thio LL. How does the ketogenic diet work? Four potential mechanisms. J Child Neurol 2013; 28 (8) 1027-1033
  • 72 McDaniel SS, Rensing NR, Thio LL, Yamada KA, Wong M. The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway. Epilepsia 2011; 52 (3) e7-e11
  • 73 Levy RG, Cooper PN, Giri P. Ketogenic diet and other dietary treatments for epilepsy. Cochrane Database Syst Rev 2012; 3: CD001903
  • 74 Meikle L, Talos DM, Onda H , et al. A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci 2007; 27 (21) 5546-5558
  • 75 Feliciano DM, Su T, Lopez J, Platel JC, Bordey A. Single-cell Tsc1 knockout during corticogenesis generates tuber-like lesions and reduces seizure threshold in mice. J Clin Invest 2011; 121 (4) 1596-1607
  • 76 Meikle L, Pollizzi K, Egnor A , et al. Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J Neurosci 2008; 28 (21) 5422-5432
  • 77 Talos DM, Kwiatkowski DJ, Cordero K, Black PM, Jensen FE. Cell-specific alterations of glutamate receptor expression in tuberous sclerosis complex cortical tubers. Ann Neurol 2008; 63 (4) 454-465
  • 78 Curatolo P. Mechanistic target of rapamycin (mTOR) in tuberous sclerosis complex-associated epilepsy. Pediatr Neurol 2015; 52 (3) 281-289
  • 79 Krueger DA, Wilfong AA, Holland-Bouley K , et al. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann Neurol 2013; 74 (5) 679-687
  • 80 Orlova KA, Parker WE, Heuer GG , et al. STRADalpha deficiency results in aberrant mTORC1 signaling during corticogenesis in humans and mice. J Clin Invest 2010; 120 (5) 1591-1602
  • 81 Wong M. Mechanisms of epileptogenesis in tuberous sclerosis complex and related malformations of cortical development with abnormal glioneuronal proliferation. Epilepsia 2008; 49 (1) 8-21
  • 82 Crino PB. mTOR: A pathogenic signaling pathway in developmental brain malformations. Trends Mol Med 2011; 17 (12) 734-742
  • 83 Sarnat H, Flores-Sarnat L, Crino P, Hader W, Bello-Espinosa L. Hemimegalencephaly: foetal tauopathy with mTOR hyperactivation and neuronal lipidosis. Folia Neuropathol 2012; 50 (4) 330-345