Neuropediatrics 2015; 46(04): 234-241
DOI: 10.1055/s-0035-1554102
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Progress in Neonatal Neurology with a Focus on Neuroimaging in the Preterm Infant

Linda S. de Vries
1   Department of Neonatology, Wilhelmina Children's Hospital and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
,
Manon J. N. L. Benders
1   Department of Neonatology, Wilhelmina Children's Hospital and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
,
Floris Groenendaal
1   Department of Neonatology, Wilhelmina Children's Hospital and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
› Author Affiliations
Further Information

Publication History

28 March 2015

14 April 2015

Publication Date:
29 June 2015 (online)

Abstract

There have been tremendous changes in the methods used to evaluate brain injury in the preterm infant in the past 30 years. In particular, major improvements have been made in how we use neuroimaging techniques and now magnetic resonance imaging (MRI) is used more often and considered complimentary to routine and sequential cranial ultrasound. The focus has shifted from severe lesions such as large intraventricular and parenchymal hemorrhages and cystic periventricular leukomalacia to assessing and understanding the etiology of more subtle noncystic white matter injury, punctate hemorrhage, and cerebellar lesions. The more severe lesions that dominated the early period of preterm neonatal brain imaging occur less frequently but are still associated with major disabilities, such as, cerebral palsy, while subtle white matter injury and cerebellar lesions are more often associated with cognitive and behavioral problems, which have become the most prevalent issues among the survivors of extremely preterm birth.

 
  • References

  • 1 Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr 1978; 92 (4) 529-534
  • 2 Harteman JC, Groenendaal F, van Haastert IC , et al. Atypical timing and presentation of periventricular haemorrhagic infarction in preterm infants: the role of thrombophilia. Dev Med Child Neurol 2012; 54 (2) 140-147
  • 3 Roberts D, Dalziel S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev 2006; 19 (3) CD004454
  • 4 Rademaker KJ, Groenendaal F, Jansen GH, Eken P, de Vries LS. Unilateral haemorrhagic parenchymal lesions in the preterm infant: shape, site and prognosis. Acta Paediatr 1994; 83 (6) 602-608
  • 5 Bassan H, Benson CB, Limperopoulos C , et al. Ultrasonographic features and severity scoring of periventricular hemorrhagic infarction in relation to risk factors and outcome. Pediatrics 2006; 117 (6) 2111-2118
  • 6 Soltirovska Salamon A, Groenendaal F, van Haastert IC , et al. Neuroimaging and neurodevelopmental outcome of preterm infants with a periventricular haemorrhagic infarction located in the temporal or frontal lobe. Dev Med Child Neurol 2014; 56 (6) 547-555
  • 7 de Vries LS, van Haastert IC, Benders MJ, Groenendaal F. Myth: cerebral palsy cannot be predicted by neonatal brain imaging. Semin Fetal Neonatal Med 2011; 16 (5) 279-287
  • 8 Roze E, Benders MJNL, Kersbergen KJ , et al. Neonatal DTI early after birth predicts motor outcome in preterm infants with periventricular hemorrhagic infarction. Pediatr Res , May 15. doi: 10.1038/pr.2015.94. [Epub ahead of print]
  • 9 Levene MI. Measurement of the growth of the lateral ventricles in preterm infants with real-time ultrasound. Arch Dis Child 1981; 56 (12) 900-904
  • 10 Davies MW, Swaminathan M, Chuang SL, Betheras FR. Reference ranges for the linear dimensions of the intracranial ventricles in preterm neonates. Arch Dis Child Fetal Neonatol Ed 2000; 82 (3) F218-F223
  • 11 Brouwer MJ, de Vries LS, Groenendaal F , et al. New reference values for the neonatal cerebral ventricles. Radiology 2012; 262 (1) 224-233
  • 12 Nishimaki S, Iwasaki Y, Akamatsu H. Cerebral blood flow velocity before and after cerebrospinal fluid drainage in infants with posthemorrhagic hydrocephalus. J Ultrasound Med 2004; 23 (10) 1315-1319
  • 13 Brouwer A, Groenendaal F, van Haastert IL, Rademaker K, Hanlo P, de Vries L. Neurodevelopmental outcome of preterm infants with severe intraventricular hemorrhage and therapy for post-hemorrhagic ventricular dilatation. J Pediatr 2008; 152 (5) 648-654
  • 14 Adams-Chapman I, Hansen NI, Stoll BJ, Higgins R ; NICHD Research Network. Neurodevelopmental outcome of extremely low birth weight infants with posthemorrhagic hydrocephalus requiring shunt insertion. Pediatrics 2008; 121 (5) e1167-e1177
  • 15 Murphy BP, Inder TE, Rooks V , et al. Posthaemorrhagic ventricular dilatation in the premature infant: natural history and predictors of outcome. Arch Dis Child Fetal Neonatal Ed 2002; 87 (1) F37-F41
  • 16 Limperopoulos C, Benson CB, Bassan H , et al. Cerebellar hemorrhage in the preterm infant: ultrasonographic findings and risk factors. Pediatrics 2005; 116 (3) 717-724
  • 17 Ecury-Goossen GM, Dudink J, Lequin M, Feijen-Roon M, Horsch S, Govaert P. The clinical presentation of preterm cerebellar haemorrhage. Eur J Pediatr 2010; 169 (10) 1249-1253
  • 18 Steggerda SJ, Leijser LM, Wiggers-de Bruïne FT, van der Grond J, Walther FJ, van Wezel-Meijler G. Cerebellar injury in preterm infants: incidence and findings on US and MR images. Radiology 2009; 252 (1) 190-199
  • 19 Chang CH, Chang FM, Yu CH, Ko HC, Chen HY. Assessment of fetal cerebellar volume using three-dimensional ultrasound. Ultrasound Med Biol 2000; 26 (6) 981-988
  • 20 Lemire RJ, Loeser JD, Leech RW, Alvord Jr EC. Normal and Abnormal Development of the Human Nervous System. Hagerstown: Harper & Row; 1975
  • 21 Volpe JJ. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol 2009; 24 (9) 1085-1104
  • 22 Steggerda SJ, De Bruïne FT, van den Berg-Huysmans AA , et al. Small cerebellar hemorrhage in preterm infants: perinatal and postnatal factors and outcome. Cerebellum 2013; 12 (6) 794-801
  • 23 Parodi A, Rossi A, Severino M , et al. Accuracy of ultrasound in assessing cerebellar haemorrhages in very low birthweight babies. Arch Dis Child Fetal Neonatal Ed 2015; (e-pub ahead of print). 10.1136/archdischild-2014-307176
  • 24 Plaisier A, Raets MM, Ecury-Goossen GM , et al. Serial cranial ultrasonography or early MRI for detecting preterm brain injury?. Arch Dis Child Fetal Neonatal Ed 2015; (e-pub ahead of print). 10.1136/archdischild-2014-306129
  • 25 Intrapiromkul J, Northington F, Huisman TA, Izbudak I, Meoded A, Tekes A. Accuracy of head ultrasound for the detection of intracranial hemorrhage in preterm neonates: comparison with brain MRI and susceptibility-weighted imaging. J Neuroradiol 2013; 40 (2) 81-88
  • 26 Kidokoro H, Anderson PJ, Doyle LW, Woodward LJ, Neil JJ, Inder TE. Brain injury and altered brain growth in preterm infants: predictors and prognosis. Pediatrics 2014; 134 (2) e444-e453
  • 27 Rollins NK, Wen TS, Dominguez R. Crossed cerebellar atrophy in children: a neurologic sequela of extreme prematurity. Pediatr Radiol 1995; 25 (Suppl. 01) S20-S25
  • 28 Limperopoulos C, Soul JS, Haidar H , et al. Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics 2005; 116 (4) 844-850
  • 29 Limperopoulos C, Bassan H, Gauvreau K , et al. Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors?. Pediatrics 2007; 120 (3) 584-593
  • 30 Tam EW, Rosenbluth G, Rogers EE , et al. Cerebellar hemorrhage on magnetic resonance imaging in preterm newborns associated with abnormal neurologic outcome. J Pediatr 2011; 158 (2) 245-250
  • 31 Banker BQ, Larroche JC. Periventricular leukomalacia of infancy. A form of neonatal anoxic encephalopathy. Arch Neurol 1962; 7: 386-410
  • 32 Pierrat V, Duquennoy C, van Haastert IC, Ernst M, Guilley N, de Vries LS. Ultrasound diagnosis and neurodevelopmental outcome of localised and extensive cystic periventricular leucomalacia. Arch Dis Child Fetal Neonatal Ed 2001; 84 (3) F151-F156
  • 33 Inder T, Huppi PS, Zientara GP , et al. Early detection of periventricular leukomalacia by diffusion-weighted magnetic resonance imaging techniques. J Pediatr 1999; 134 (5) 631-634
  • 34 Fu J, Xue X, Chen L , et al. Studies on the Value of Diffusion-Weighted MR Imaging in the Early Prediction of Periventricular Leukomalacia. J Neuroimaging 2009; 19 (1) 13-18
  • 35 Fazzi E, Orcesi S, Caffi L , et al. Neurodevelopmental outcome at 5-7 years in preterm infants with periventricular leukomalacia. Neuropediatrics 1994; 25 (3) 134-139
  • 36 Kersbergen KJ, de Vries LS, Groenendaal F , et al. Corticospinal tract injury precedes thalamic volume reduction in preterm infants with cystic periventricular leukomalacia (epub ahead of print). J Pediatr 2015; ; pii: S0022-3476(15)00493-X. doi: 10.1016/j.jpeds.2015.05.013
  • 37 Back SA. Perinatal white matter injury: the changing spectrum of pathology and emerging insights into pathogenetic mechanisms. Ment Retard Dev Disabil Res Rev 2006; 12 (2) 129-140
  • 38 Volpe JJ. Systemic inflammation, oligodendroglial maturation, and the encephalopathy of prematurity. Ann Neurol 2011; 70 (4) 525-529
  • 39 Back SA, Miller SP. Brain injury in premature neonates: A primary cerebral dysmaturation disorder?. Ann Neurol 2014; 75 (4) 469-486
  • 40 André P, Thébaud B, Delavaucoupet J , et al. Late-onset cystic periventricular leukomalacia in premature infants: a threat until term. Am J Perinatol 2001; 18 (2) 79-86
  • 41 Verboon-Maciolek MA, Groenendaal F, Cowan F, Govaert P, van Loon AM, de Vries LS. White matter damage in neonatal enterovirus meningoencephalitis. Neurology 2006; 66 (8) 1267-1269
  • 42 Verboon-Maciolek MA, Groenendaal F, Hahn CD , et al. Human parechovirus causes encephalitis with white matter injury in neonates. Ann Neurol 2008; 64 (3) 266-273
  • 43 Verboon-Maciolek MA, Truttmann AC, Groenendaal F , et al. Development of cystic periventricular leukomalacia in newborn infants after rotavirus infection. J Pediatr 2012; 160 (1) 165-8.e1
  • 44 Yeom JS, Kim YS, Seo JH , et al. Distinctive pattern of white matter injury in neonates with rotavirus infection. Neurology 2015; 84 (1) 21-27
  • 45 Hamrick SE, Miller SP, Leonard C , et al. Trends in severe brain injury and neurodevelopmental outcome in premature newborn infants: the role of cystic periventricular leukomalacia. J Pediatr 2004; 145 (5) 593-599
  • 46 van Haastert IC, Groenendaal F, Uiterwaal CS , et al. Decreasing incidence and severity of cerebral palsy in prematurely born children. J Pediatr 2011; 159 (1) 86-91.e1
  • 47 Shankaran S, Langer JC, Kazzi SN, Laptook AR, Walsh M ; National Institute of Child Health and Human Development Neonatal Research Network. Cumulative index of exposure to hypocarbia and hyperoxia as risk factors for periventricular leukomalacia in low birth weight infants. Pediatrics 2006; 118 (4) 1654-1659
  • 48 Counsell SJ, Allsop JM, Harrison MC , et al. Diffusion-weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics 2003; 112 (1 Pt 1) 1-7
  • 49 Boardman JP, Craven C, Valappil S , et al. A common neonatal image phenotype predicts adverse neurodevelopmental outcome in children born preterm. Neuroimage 2010; 52 (2) 409-414
  • 50 de Bruïne FT, van den Berg-Huysmans AA, Leijser LM , et al. Clinical implications of MR imaging findings in the white matter in very preterm infants: a 2-year follow-up study. Radiology 2011; 261 (3) 899-906
  • 51 Hart A, Whitby E, Wilkinson S, Alladi S, Paley M, Smith M. Neuro-developmental outcome at 18 months in premature infants with diffuse excessive high signal intensity on MR imaging of the brain. Pediatr Radiol 2011; 41 (10) 1284-1292
  • 52 Kidokoro H, Anderson PJ, Doyle LW, Neil JJ, Inder TE. High signal intensity on T2-weighted MR imaging at term-equivalent age in preterm infants does not predict 2-year neurodevelopmental outcomes. AJNR Am J Neuroradiol 2011; 32 (11) 2005-2010
  • 53 Jeon TY, Kim JH, Yoo SY , et al. Neurodevelopmental outcomes in preterm infants: comparison of infants with and without diffuse excessive high signal intensity on MR images at near-term-equivalent age. Radiology 2012; 263 (2) 518-526
  • 54 Skiöld B, Vollmer B, Böhm B , et al. Neonatal magnetic resonance imaging and outcome at age 30 months in extremely preterm infants. J Pediatr 2012; 160 (4) 559-566.e1
  • 55 Woodward LJ, Anderson PJ, Austin NC, Howard K, Inder TE. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med 2006; 355 (7) 685-694
  • 56 Woodward LJ, Clark CA, Bora S, Inder TE. Neonatal white matter abnormalities an important predictor of neurocognitive outcome for very preterm children. PLoS ONE 2012; 7 (12) e51879
  • 57 Bassi L, Chew A, Merchant N , et al. Diffusion tensor imaging in preterm infants with punctate white matter lesions. Pediatr Res 2011; 69 (6) 561-566
  • 58 Leijser LM, de Bruïne FT, van der Grond J, Steggerda SJ, Walther FJ, van Wezel-Meijler G. Is sequential cranial ultrasound reliable for detection of white matter injury in very preterm infants?. Neuroradiology 2010; 52 (5) 397-406
  • 59 Kersbergen KJ, Benders MJ, Groenendaal F , et al. Different patterns of punctate white matter lesions in serially scanned preterm infants. PLoS ONE 2014; 9 (10) e108904
  • 60 Benders MJ, Groenendaal F, Uiterwaal CS , et al. Maternal and infant characteristics associated with perinatal arterial stroke in the preterm infant. Stroke 2007; 38 (6) 1759-1765
  • 61 Ecury-Goossen GM, Raets MM, Lequin M, Feijen-Roon M, Govaert P, Dudink J. Risk factors, clinical presentation, and neuroimaging findings of neonatal perforator stroke. Stroke 2013; 44 (8) 2115-2120
  • 62 Barkovich AJ, Sargent SK. Profound asphyxia in the premature infant: imaging findings. AJNR Am J Neuroradiol 1995; 16 (9) 1837-1846
  • 63 Logitharajah P, Rutherford MA, Cowan FM. Hypoxic-ischemic encephalopathy in preterm infants: antecedent factors, brain imaging, and outcome. Pediatr Res 2009; 66 (2) 222-229
  • 64 Eicke M, Briner J, Willi U, Uehlinger J, Boltshauser E. Symmetrical thalamic lesions in infants. Arch Dis Child 1992; 67 (1 Spec No) 15-19
  • 65 Buldini B, Drigo P, Via LD, Calderone M, Laverda AM. Symmetrical thalamic calcifications in a monozygotic twin: case report and literature review. Brain Dev 2005; 27 (1) 66-69
  • 66 Pearce R, Baardsnes J. Term MRI for small preterm babies: do parents really want to know and why has nobody asked them?. Acta Paediatr 2012; 101 (10) 1013-1015
  • 67 Ment LR, Hirtz D, Hüppi PS. Imaging biomarkers of outcome in the developing preterm brain. Lancet Neurol 2009; 8 (11) 1042-1055
  • 68 van den Heuvel MP, Kersbergen KJ, de Reus MA , et al. The Neonatal Connectome During Preterm Brain Development. Cereb Cortex 2014; bhu095 (e-pub ahead of print)
  • 69 van Kooij BJ, de Vries LS, Ball G , et al. Neonatal tract-based spatial statistics findings and outcome in preterm infants. AJNR Am J Neuroradiol 2012; 33 (1) 188-194
  • 70 Ball G, Pazderova L, Chew A , et al. Thalamocortical Connectivity Predicts Cognition in Children Born Preterm. Cereb Cortex 2015; bhu331 [Epub ahead of print]
  • 71 Moore T, Hennessy EM, Myles J , et al. Neurological and developmental outcome in extremely preterm children born in England in 1995 and 2006: the EPICure studies. BMJ 2012; 345: e7961