Horm Metab Res 2015; 47(09): 623-632
DOI: 10.1055/s-0035-1555913
Review
© Georg Thieme Verlag KG Stuttgart · New York

The Emerging Role of Cardiovascular Magnetic Resonance Imaging in the Evaluation of Metabolic Cardiomyopathies

S. Mavrogeni
1   Onassis Cardiac Surgery Center, Athens, Greece
,
G. Markousis-Mavrogenis
1   Onassis Cardiac Surgery Center, Athens, Greece
,
V. Markussis
1   Onassis Cardiac Surgery Center, Athens, Greece
,
G. Kolovou
1   Onassis Cardiac Surgery Center, Athens, Greece
› Author Affiliations
Further Information

Publication History

received 28 October 2014

accepted 29 June 2015

Publication Date:
21 July 2015 (online)

Abstract

The aim of this review is to discuss the role of Cardiovascular Magnetic Resonance (CMR) in the diagnosis, risk stratification, and follow-up of metabolic cardiomyopathies. The classification of myocardial diseases, proposed by WHO/ISFC task force, distinguished specific cardiomyopathies, caused by metabolic disorders, into 4 types: 1) endocrine disorders, 2) storage or infiltration disorders (amyloidosis, hemochromatosis and familial storage disorders), 3) nutritional disorders (Kwashiorkor, beri-beri, obesity, and alcohol), and 4) diabetic heart. Thyroid disease, pheochromocytoma, and growth hormone excess or deficiency may contribute to usually reversible dilated cardiomyopathy. Glucogen storage diseases can be presented with myopathy, liver, and heart failure. Lysosomal storage diseases can provoke cardiac hypertrophy, mimicking hypertrophic cardiomyopathy and arrhythmias. Hereditary hemochromatosis, an inherited disorder of iron metabolism, leads to tissue iron overload in different organs, including the heart. Cardiac amyloidosis is the result of amyloid deposition in the heart, formed from breakdown of normal or abnormal proteins that leads to increased heart stiffness, restrictive cardiomyopathy, and heart failure. Finally, nutritional disturbances and metabolic diseases, such as Kwashiorkor, beri-beri, obesity, alcohol consumption, and diabetes mellitus may also lead to severe cardiac dysfunction. CMR, through its capability to reliably assess anatomy, function, inflammation, rest-stress myocardial perfusion, myocardial fibrosis, aortic distensibility, iron and/or fat deposition can serve as an excellent tool for early diagnosis of heart involvement, risk stratification, treatment evaluation, and long term follow-up of patients with metabolic cardiomyopathies.

 
  • References

  • 1 Schalla S, Nagel E, Lehmkuhl H, Klein C, Bornstedt A, Schnackenburg B, Schneider U, Fleck E. Comparison of magnetic resonance real-time imaging of LV function with conventional magnetic resonance imaging and echocardiography. Am J Cardiol 2001; 87: 95-99
  • 2 Bottini PB, Carr AA, Prisant M, Flickinger FW, Allison JD, Gottdiener JS. Magnetic resonance imaging compared to echo/phy to assess LV MASS in the hypertensive patient. Am J Hypertension 1995; 8: 221-228
  • 3 Nagel E, Lehmkuh HB, Bocksch W, Klein C, Vogel U, Frantz E, Ellmer A, Dreysse S, Fleck E. Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 1999; 99: 763-770
  • 4 Wahl A, Paetsch I, Roethemeyer S, Klein C, Fleck E, Nagel E. High-dose dobutamine-atropine stress cardiovascular magnetic resonance for follow-up after coronary revascularization procedures in patients with wall motion abnormalities at rest. Radiology 2004; 233: 210-216
  • 5 Hundley WG, Hamilton CA, Thomas MS, Herrington DM, Salido TB, Kitzman DW, Little WC, Link KM. Utility of fast cine magnetic resonance imaging and display for the detection of myocardial ischemia in patients not well suited for second harmonic stress echocardiography. Circulation 1999; 100: 1697-1702
  • 6 Danias PG. Gadolinium-enhanced cardiac magnetic resonance imaging: expanding the spectrum of clinical applications. Am J Med 2001; 110: 591-592
  • 7 Schwitter J. Myocardial perfusion imaging by cardiac magnetic resonance. J Nucl Cardiol 2006; 13: 841-854
  • 8 Schwitter J, Nanz D, Kneifel S, Bertschinger K, Buchi M, Knusel PR, Marincek B, Luscher TF, von Schulthess GK. Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 2001; 103: 2230-2235
  • 9 Plein S, Ryf S, Schwitter J, Radjenovic A, Boesiger P, Kozerke S. Dynamic contrast-enhanced myocardial perfusion MRI accelerated with k-t sense. Magn Reson Med 2007; 58: 777-785
  • 10 Gebker R, Jahnke C, Paetsch I, Kelle S, Schnackenburg B, Fleck E, Nagel E. Diagnostic performance of myocardial perfusion MR at 3T in patients with coronary artery disease. Radiology 2008; 247: 57-63
  • 11 Cheng AS, Pegg TJ, Karamitsos TD, Searle N, Jerosch-Herold M, Choudhury RP, Banning AP, Neubauer S, Robson MD, Selvanayagam JB. Cardiovascular magnetic resonance perfusion imaging at 3-tesla for the detection of coronary artery disease: a comparison with 1.5-tesla. J Am Coll Cardiol 2007; 49: 2440-2449
  • 12 Fritz-Hansen T, Hove JD, Kofoed KF, Kelbaek H, Larsson HB. Quantification of MRI measured myocardial perfusion reserve in healthy humans: a comparison with positron emission tomography. J Magn Reson Imaging 2008; 27: 818-824
  • 13 Jerosch-Herold M, Wilke N, Stillman AE. Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys 1998; 25: 73-84
  • 14 Selvanayagam JB, Jerosch-Herold M, Porto I, Sheridan D, Cheng AS, Petersen SE, Searle N, Channon KM, Banning AP, Neubauer S. Resting myocardial blood flow is impaired in hibernating myocardium: a magnetic resonance study of quantitative perfusion assessment. Circulation 2005; 112: 3289-3296
  • 15 Nagel E, Klein C, Paetsch I, Hettwer S, Schnackenburg B, Wegscheider K, Fleck E. Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 2003; 108: 432-437
  • 16 Cullen JH, Horsfield MA, Reek CR, Cherryman GR, Barnett DB, Samani NJ. A myocardial perfusion reserve index in humans using first-pass contrast-enhanced magnetic resonance imaging. J Am Coll Cardiol 1999; 33: 1386-1394
  • 17 Al-Saadi N, Nagel E, Gross M, Bornstedt A, Schnackenburg B, Klein C, Klimek W, Oswald H, Fleck E. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 2000; 101: 1379-1383
  • 18 Schwitter J, Wacker CM, van Rossum AC, Lombardi M, Al-Saadi N, Ahlstrom H, Dill T, Larsson HB, Flamm SD, Marquardt M, Johansson L. MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J 2008; 29: 480-489
  • 19 Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, Bijsterveld P, Ridgway JP, Radjenovic A, Dickinson CJ, Ball SG, Plein S. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 2012; 379: 453-460
  • 20 Kim RJ, Chen EL, Lima JA, Judd RM. Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation 1996; 94: 3318-3326
  • 21 Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 2000; 343: 1445-1453
  • 22 Judd RM, Lugo-Olivieri CH, Arai M, Kondo T, Croisille P, Lima JA, Mohan V, Becker LC, Zerhouni EA. Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 1995; 92: 1902-1910
  • 23 Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, Bundy J, Finn JP, Klocke FJ, Judd RM. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 1999; 100: 1992-2002
  • 24 Fieno DS, Kim RJ, Chen EL, Lomasney JW, Klocke FJ, Judd RM. Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol 2000; 36: 1985-1991
  • 25 Wu E, Judd RM, Vargas JD, Klocke FJ, Bonow RO, Kim RJ. Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet 2001; 357: 21-28
  • 26 Kaandorp TA, Lamb HJ, Poldermans D, Viergever EP, Boersma E, van der Wall EE, de Roos A, Bax JJ. Assessment of right ventricular infarction with contrast-enhanced magnetic resonance imaging. Coron Artery Dis 2007; 18: 39-43
  • 27 Kumar A, Abdel-Aty H, Kriedemann I, Schulz-Menger J, Gross CM, Dietz R, Friedrich MG. Contrast enhanced cardiovascular magnetic resonance imaging of right ventricular infarction. J Am Coll Cardiol 2006; 48: 1969-1976
  • 28 Larose E, Ganz P, Reynolds HG, Dorbala S, Di Carli MF, Brown KA, Kwong RY. Right ventricular dysfunction assessed by cardiovascular magnetic resonance imaging predicts poor prognosis late after myocardial infarction. J Am Coll Cardiol 2007; 49: 855-862
  • 29 Roes SD, Kelle S, Kaandorp TA, Kokocinski T, Poldermans D, Lamb HJ, Boersma E, van derKlein C, Nekolla SG, Bengel FM, Momose M, Sammer A, Haas F, Schnackenburg B, Delius W, Mudra H, Wolfram D, Schwaiger M. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 2002; 105: 162-167
  • 30 Wagner A, Mahrholdt H, Holly TA, Elliott MD, Regenfus M, Parker M, Klocke FJ, Bonow RO, Kim RJ, Judd RM. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 2003; 361: 374-379
  • 31 Bondarenko O, Beek AM, Nijveldt R, McCann GP, van Dockum WG, Hofman MB, Twisk JW, Visser CA, van Rossum AC. Functional outcome after revascularization in patients with chronic ischemic heart disease: a quantitative late gadolinium enhancement CMR study evaluating transmural scar extent, wall thickness and periprocedural necrosis. J Cardiovasc Magn Reson 2007; 9: 815-821
  • 32 Kwong RY, Chan AK, Brown KA, Chan CW, Reynolds HG, Tsang S, Davis RB. Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation 2006; 113: 2733-2743
  • 33 Klem I, Weinsaft JW, Bahnson TD, Hegland D, Kim HW, Hayes B, Parker MA, Judd RM, Kim RJ. Assessment of myocardial scarring improves risk stratification in patients evaluated for cardiac defibrillator implantation. J Am Coll Cardiol 2012; 60: 408-420
  • 34 Mavrogeni S. Evaluation of myocardial iron overload using magnetic resonance imaging. Blood Transfus 2009; 7: 183-187
  • 35 Voges I, Jerosch-Herold M, Hedderich J, Pardun E, Hart C, Gabbert DD, Hansen JH, Petko C, Kramer HH, Rickers C. Normal values of aortic dimensions, distensibility, and pulse wave velocity in children and young adults: a cross-sectional study. J Cardiovasc Magn Reson 2012; 14: 77
  • 36 Kim HM, Kim KJ, Lee HJ, Yu HT, Moon JH, Kang ES, Cha BS, Lee HC, Lee BW, Kim YJ. Epicardial adipose tissue thickness is an indicator for coronary artery stenosis in asymptomatic type 2 diabetic patients: its assessment by cardiac magnetic resonance. Cardiovasc Diabetol 2012; 11: 83
  • 37 Verhagen SN, Visseren FL. Perivascular adipose tissue as a cause of atherosclerosis. Atherosclerosis 2011; 214: 3-10
  • 38 Yudkin JS, Eringa E, Stehouwer CD. “Vasocrine” signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet 2005; 365: 1817-1820
  • 39 Schäffler A, Schölmerich J. Innate immunity and adipose tissue biology. Trends Immunol 2010; 31: 228-235
  • 40 Sacks HS, Fain JN, Cheema P, Bahouth SW, Garrett E, Wolf RY, Wolford D, Samaha J. Inflammatory genes in epicardial fat contiguous with coronary atherosclerosis in the metabolic syndrome and type 2 diabetes: changes associated with pioglitazone. Diabetes Care 2011; 34: 730-733
  • 41 Yao X, Shan S, Zhang Y, Ying H. Recent progress in the study of brown adipose tissue. Cell Biosci 2011; 1: 35
  • 42 Hirata Y, Kurobe H, Akaike M, Chikugo F, Hori T, Bando Y, Nishio C, Higashida M, Nakaya Y, Kitagawa T, Sata M. Enhanced inflammation in epicardial fat in patients with coronary artery disease. Int Heart J 2011; 52: 139-142
  • 43 Iacobellis G, Ribaudo MC, Assael F, Vecci E, Tiberti C, Zappaterreno A, Di Mario U, Leonetti F. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab 2003; 88: 5163-5168
  • 44 Bertaso AG, Bertol D, Duncan BB, Foppa M. Epicardial fat: definition, measurements and systematic review of main outcomes. Arq Bras Cardiol 2013; 101: e18-e28
  • 45 Luechinger R, Scwitter J. CMR update. J Schwitter Switzerland 2008; 30-41
  • 46 Kim WY, Danias PG, Stuber M, Flamm SD, Plein S, Nagel E, Langerak SE, Weber OM, Pedersen EM, Schmidt M, Botnar RM, Manning WJ. Coronary magnetic resonance angiography for the detection of coronary stenosis. N Engl J Med 2001; 345: 1863-1869
  • 47 Jahnke C, Paetsch I, Nehrke K, Schnackenburg B, Gebker R, Fleck E, Nagel E. Rapid and complete coronary arterial tree visualization with magnetic resonance imaging: feasibility and diagnostic performance. Eur Heart J 2005; 26: 2313-2319
  • 48 Sakuma H, Ichikawa Y, Suzawa N, Hirano T, Makino T, Takeda K. Detection of coronary artery stenosis with whole-heart coronary magnetic resonance angiography. J Am Coll Cardiol 2006; 48: 1946-1950
  • 49 Yang Q, Li K, Liu X, Du X, Bi X, Huang F, Jerecic R, Liu Z, An J, Xu D, Zheng H, Fan Z, Li D. 3.0T Whole-Heart Coronary Magnetic Resonance Angiography Performed With 32-Channel Cardiac Coils: A Single-Center Experience. Circ Cardiovasc Imaging 2012; 5: 573-579
  • 50 Weckbach S, Findeisen HM, Schoenberg SO, Kramer H, Stark R, Clevert DA, Reiser MF, Parhofer KG. Systemic cardiovascular complications in patients with long-standing diabetes mellitus: comprehensive assessment with whole-body magnetic resonance imaging/magnetic resonance angiography. Invest Radiol 2009; 44: 242-250
  • 51 Jellis C, Wright J, Kennedy D, Sacre J, Jenkins C, Haluska B, Martin J, Fenwick J, Marwick TH. Association of imaging markers of myocardial fibrosis with metabolic and functional disturbances in early diabetic cardiomyopathy. Circ Cardiovasc Imaging 2011; 4: 693-702
  • 52 Siu CW, Yeung CY, Lau CP, Kung AWC, Tse HF. Incidence, clinical characteristics and outcome of congestive heart failure as the initial presentation in patients with primary hyperthyroidism. Heart 2007; 93: 483-487
  • 53 Dahl P, Danzi S, Klein I. Thyrotoxic cardiac disease. Curr Heart Fail Rep 2008; 5170-5176
  • 54 Merce J, Ferras S, Oltra C, Sanz E, Vendrell J, Simon I, Camprubí M, Bardají A, Ridao C. Cardiovascular abnormalities in hyperthyroidism: a prospective Doppler echocardiographic study. Am J Med 2005; 118: 126-131
  • 55 Cavallo A, Joseph CJ, Casta A. Cardiac complications in juvenile hyperthyroidism. Am J Dis Child 1984; 138: 479
  • 56 Featherstone HJ, Stewart DK. Angina in thyrotoxicosis: Thyroidrelated coronary artery spasm. Arch Int Med 1983; 143: 554
  • 57 Thomas MR, McGregor AM, Jewitt DE. Left ventricle filling abnormalities prior to and following treatment of thyrotoxicosis – is diastolic dysfunction implicated in thyrotoxic cardiomyopathy?. Eur Heart J 1993; 14: 662-668
  • 58 Ortiz de Murua JA, Del Canizo FJ, Del Campo F, Avila MC, Villafranca JL. Some considerations on reversible dilated cardiomyopathy due to thyrotoxicosis. Am J Cardiol 1993; 71: 501
  • 59 Boccalandro C, Boccalandro F, Orlander P, Wei CF. Severe reversible dilated cardiomyopathy and hyperthyroidism: case report and review of the literature. Endocr Pract 2003; 9: 140-146
  • 60 Woeber KA. Thyrotoxicosis and the heart. N Engl J Med 1992; 327: 94-98
  • 61 Forfar JC, Muir AL, Sawers SA, Toft AD. Abnormal left ventricular function in hyperthyroidism: evidence for a possible reversible cardiomyopathy. N Engl J Med 1982; 307: 1165-1170
  • 62 Paran Y, Nimrod A, Goldin Y, Justo D. Pulmonary hypertension and predominant right heart failure in thyrotoxicosis. Resuscitation 2006; 69: 339-341
  • 63 Packer DI, Brady GH, Worley SJ, Smith MS, Cobb FR, Coleman RE, Gallagher JJ, German LD. Tachycardia induced cardiomyopathy: a reversible from of left ventricular dysfunction. Am J Cardiol 1986; 57: 563-570
  • 64 Bauerlein EJ, Chakko CS, Kessler KM. Reversible dilated cardiomyopathy due to thyrotoxicosis. Am J Cardiol 1992; 70: 132
  • 65 Ebisawa K, Ikeda U, Murata M, Sekiguchi H, Nagai R, Nagai R, Yazaki Y, Shimada K. Irreversible cardiomyopathy due to thyrotoxicosis. Cardiology 1994; 84: 274-277
  • 66 Fazio S, Biondi B, Carella C, Sabatini D, Cittadini A, Panza N, Lombardi G, Saccà L. Diastolic dysfunction in patients on thyroid-stimulating hormone suppressive therapy with levothyroxine: beneficial effect of beta-blockade. J Clin Endocrinol Metab 1995; 80: 2222-2226
  • 67 Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990; 322: 1561-1566
  • 68 Umpierrez GE, Challapalli S, Patterson C. Congestive heart failure due to reversible cardiomyopathy in patients with hyperthyroidism. Am J Med Sci 1995; 310: 99-102
  • 69 Goldman LE, Sahlas DJ, Sami M. A case of thyrotoxicosis and reversible systolic cardiac dysfunction. Can J Cardiol 1999; 15: 811-814
  • 70 Kantharia BK, Richards HB, Battaglia J. Reversible dilated cardiomyopathy: an unusual case of thyrotoxicosis. Am Heart J 1995; 129: 1030-1032
  • 71 Gupta Y, Ammini AC. Vitiligo, hypothyroidism and cardiomyopathy. Indian J Endocrinol Metab 2012; 16: 463-465
  • 72 Shah AN, Dubrey SW, Thomas D. Hypothyroid cardiomyopathy due to hypopituitarism: a diagnostic dilemma. Clin Med 2007; 7: 639-640
  • 73 Ripoli A, Pingitore A, Favilli B, Bottoni A, Turchi S, Osman NF, De Marchi D, Lombardi M, L’Abbate A, Iervasi G. Does subclinical hypothyroidism affect cardiac pump performance? Evidence from a magnetic resonance imaging study. J Am Coll Cardiol 2005; 45: 439-445
  • 74 Mavrogeni S, Markussis V, Bratis K, Mastorakos G, Sidiropoulou EJ, Papadopoulou E, Kolovou G. Hyperthyroidism induced autoimmune myocarditis. Evaluation by cardiovascular magnetic resonance and endomyocardial biopsy. Int J Cardiol 2012; 158: 166-168
  • 75 Mavrogeni S, Spargias K, Markussis V, Kolovou G, Demerouti E, Papadopoulou E, Stavridis G, Kaklamanis L, Douskou M, Constantoulakis P, Cokkinos DV. Myocardial inflammation in autoimmune diseases: investigation by cardiovascular magnetic resonance and endomyocardial biopsy. Inflamm Allergy Drug Targets 2009; 8: 390-397
  • 76 Gilbert PL, Siegel RJ, Melmed S, Sherman CT, Fishbein MC. Cardiac morphology in rats with growth hormone-producing tumours. J Mol Cell Cardiol 1985; 17: 805-811
  • 77 Rubin SA, Buttrick P, Malhotra A, Melmed S, Fishbein MC. Cardiac physiology, biochemistry and morphology in response to excess growth hormone in the rat. J Mol Cell Cardiol 1990; 22: 429-438
  • 78 Mather HM, Boyd MJ, Jenkins JS. Heart size and function in acromegaly. Br Heart J 1979; 41: 697-701
  • 79 Smallridge RC, Rajfer S, Davia J, Schaaf M. Acromegaly and the heart. An echocardiographic study. Am J Med 1979; 66: 22-27
  • 80 Bertoni PD, Morandi G. Impaired left ventricular diastolic in acromegaly: an echocardiographic study. Acta Cardiol 1985; 42: 1-10
  • 81 Morvan D, Komajda M, Grimaldi A, Turpin G, Grosgogeat Y. Cardiac hypertrophy and function in asymptomatic acromegaly. Eur Heart J 1991; 12: 666-672
  • 82 Fazio S, Cittadini A, Cuocolo A, Merola B, Sabatini D, Colao A, Biondi B, Lombardi G, Saccà L. Impaired cardiac performance is a distinct feature of uncomplicated acromegaly. J Clin Endocrinol Metab 1994; 79: 441-446
  • 83 Herrmann BL, Bruch C, Saller B, Ferdin S, Dagres N, Ose C, Erbel R, Mann K. Occurrence of left ventricular late potentials in patients active acromegaly. Clin Endocrinol 2001; 55: 201-207
  • 84 van den Heuvel PA, Elbers HR, Plokker HW, Bruschke AV. Myocardial involvement in acromegaly. Int J Cardiol 1984; 6: 550-553
  • 85 Frustaci A, Chimenti C, Setoguchi M, Guerra S, Corsello S, Crea F, Leri A, Kajstura J, Anversa P, Maseri A. Cell death in acromegalic cardiomyopathy. Circulation 1999; 99: 1426-1434
  • 86 Passa P, Masquet C, Cophignon J, Gourgon R, Bouvrain Y. Le coeur dans l’acromegalie. Etude hemodynamique. Arch Mal Coeur Vaiss 1973; 66: 1517-1523
  • 87 Thuesen L, Christiansen JS, Sorensen KE, Jorgensen JOL, Orskov H, Henningsen P. Increased myocardial contractility following growth hormone administration in normal man. Dan Med Bull 1988; 35: 193-196
  • 88 Losa M, von Werder K In: Manelli F. (ed.) Growth hormone and the heart. The heart in acromegaly. Boston: Kluwer Academic Publishers; 2001: 33-43
  • 89 Orme SM, McNally RJ, Cartwright RA, Belchetz PE. Mortality and cancer incidence in acromegaly: a retrospective cohort study. United Kingdom Acromegaly Study Group. J Clin Endocrinol Metab 1998; 83: 2730-2734
  • 90 López-Velasco R, Escobar-Morreale HF, Vega B, Villa E, Sancho JM, Moya-Mur JL, García-Robles R. Cardiac involvement in acromegaly: specific myocardiopathy or consequence of systemic hypertension?. J Clin Endocrinol Metab 1997; 82: 1047-1053
  • 91 Colao A, Baldelli R, Marzullo P, Ferretti E, Ferone D, Gargiulo P, Petretta M, Tamburrano G, Lombardi G, Liuzzi A. Systemic hypertension and impaired glucose tolerance are independently correlated to the severity of the acromegalic cardiomyopathy. J Clin Endocrinol Metab 2000; 85: 193-199
  • 92 Legrand V, Beckers A, Pham VT, Demoulin JC, Stevenaert A. Dramatic improvement of severe dilated cardiomyopathy in an acromegalic patient after treatment with octreotide and trans-sphenoidal surgery. Eur Heart J 1994; 15: 1286-1289
  • 93 Nishiki M, Murakami Y, Sohmiya M, Koshimura K, Inoue K, Goto Y, Nakamura N, Kato Y. Histopathological improvement of acromegalic cardiomyopathy by intermittent subcutaneous infusion of octreotide. Endocr J 1997; 44: 655-660
  • 94 Akaza I, Tsuchiya K, Akaza M, Sugiyama T, Izumiyama H, Doi M, Yoshimoto T, Hirata Y. Improvement of congestive heart failure after octreotide and transsphenoidal surgery in a patient with acromegaly. Intern Med 2009; 48: 697-700
  • 95 Hayward RP, Emanuel RW, Nabarro JD. Acromegalic heart disease: influence of treatment of the acromegaly on the heart. Q J Med 1987; 62: 41-58
  • 96 Saccà L, Cittadini A, Fazio S. Growth hormone and the heart. Endocr Rev 1994; 15: 555-573
  • 97 Yokota F, Arima H, Hirano M, Uchikawa T, Inden Y, Nagatani T, Oiso Y. Normalisation of plasma growth hormone levels improved cardiac dysfunction due to acromegalic cardiomyopathy with severe fibrosis. BMJ Case Rep 2010; Sep 19; 2010
  • 98 Salomon F, Cuneo RC, Hesp R, Sonksen PH. The effects of treatment with recombinant human growth hormone on body composition and metabolism in adults with growth hormone deficiency. N Engl J Med 1989; 321: 1797-1803
  • 99 Longobardi S, Cuocolo A, Merola B, Di Rella F, Colao A, Nicolai E, Cardei S, Salvatore M, Lombardi G. Left ventricular function in young adults with childhood and adulthood onset growth hormone deficiency. Clin Endocrinol 1998; 48: 137-143
  • 100 Thuesen L, Jorgensen JOL, Muller JR, Kristensen BO, Skakkebaek NE, Vahl N, Christiansen JS. Short and long-term cardiovascular effects of growth hormone deficient adults. Clin Endocrinol 1994; 41: 615-650
  • 101 Valcavi R, Gaddi O, Zini M, Iavicoli M, Mellino U, Portioli I. Cardiac performance and mass in adult with hypopituitarism: effects of one year of growth treatment. J Clin Endocrinol Metab 1995; 80: 659-666
  • 102 Andreassen M, Faber J, Kjær A, Petersen CL, Kristensen LØ. Cardiac effects of 3 months treatment of acromegaly evaluated by magnetic resonance imaging and B-type natriuretic peptides. Pituitary 2010; 13: 329-336
  • 103 Bogazzi F, Lombardi M, Strata E, Aquaro G, Lombardi M, Urbani C, Di Bello V, Cosci C, Sardella C, Talini E, Martino E. Effects of somatostatin analogues on acromegalic cardiomyopathy: results from a prospective study using cardiac magnetic resonance. J Endocrinol Invest 2010; 33: 103-108
  • 104 Varghese RT, John AM, Paul TV. Catecholamine induced cardiomyopathy in pheochromocytoma. Indian J Endocrinol Metab 2013; 17: 733-735
  • 105 Agarwal G, Sadacharan D, Kapoor A, Batra A, Dabadghao P, Chand G, Mishra A, Agarwal A, Verma AK, Mishra SK. Cardiovascular dysfunction and catecholamine cardiomyopathy in pheochromocytoma patients and their reversal following surgical cure: results of a prospective case-control study. Surgery 2011; 150: 1202-1211
  • 106 Naderi N, Amin A, Setayesh A, Pouraliakbar H, Mozaffari K, Maleki M. Pheochromocytoma-induced reverse tako-tsubo with rapid recovery of left ventricular function. Cardiol J 2012; 19: 527-531
  • 107 Magoulas PL, El-Hattab AW. Glycogen Storage Disease Type IV. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Stephens K. (eds.). GeneReviews™ [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2013 2013. Jan 03
  • 108 Dagli A, Sentner CP, Weinstein DA. Glycogen Storage Disease Type III. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Stephens K. editors. GeneReviews™ [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2013 2010. Mar 09 [updated 2012 Sep 06]
  • 109 Arenas J, Martín MA, Andreu AL. Glycogen Storage Disease Type V. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Stephens K. editors. GeneReviews™ [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2013 2006. Apr 19 [updated 2009 May 12]
  • 110 Leslie N, Tinkle BT. Glycogen Storage Disease Type II (Pompe Disease). In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Stephens K. editors. GeneReviews™ [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2013 2007. Aug 31 [updated 2013 May 09]
  • 111 Gambarin FI, Disabella E, Narula J, Diegoli M, Grasso M, Serio A, Favalli BM, Agozzino M, Tavazzi L, Fraser AG, Arbustini E. When should cardiologists suspect Anderson-Fabry disease?. Am J Cardiol 2010; 106: 1492-1499
  • 112 Barbey F, Qanadli SD, Juli C, Brakch N, Palacek T, Rizzo E, Jeanrenaud X, Eckhardt B, Linhart A. Aortic remodelling in Fabry disease. Eur Heart J 2010; 31: 347-353
  • 113 Cheng Z, Fang Q. Danon disease: focusing on heart. J Hum Genet 2012; 57: 407-410
  • 114 Fix OK, Kowdley KV. Hereditary hemochromatosis. Minerva Med 2008; 99: 605-617
  • 115 Quarta CC, Kruger JL, Falk RH. Cardiac amyloidosis. Circulation 2012; 126: e178-e182
  • 116 Barker PC, Pasquali SK, Darty S, Ing RJ, Li JS, Kim RJ, DeArmey S, Kishnani PS, Campbell MJ. Use of cardiac magnetic resonance imaging to evaluate cardiac structure, function and fibrosis in children with infantile Pompe disease on enzyme replacement therapy. Mol Genet Metab 2010; 101: 332-337
  • 117 Carbone I, Francone M, Chimenti C, Galea N, Russo M, Frustaci A. Images in cardiovascular medicine: Right ventricular late enhancement as a magnetic resonance marker of glycogen storage disease. Circulation 2010; 122: 189-190
  • 118 Moon JC, Mundy HR, Lee PJ, Mohiaddin RH, Pennell DJ. Images in cardiovascular medicine. Myocardial fibrosis in glycogen storage disease type III. Circulation 2003; 107: e47
  • 119 Imbriaco M, Messalli G, Avitabile G, Cuocolo A, Maurea S, Soscia F, Pisani A. Cardiac magnetic resonance imaging illustrating Anderson-Fabry disease progression. Br J Radiol 2010; 83: e249-e251
  • 120 Imbriaco M, Pisani A, Spinelli L, Cuocolo A, Messalli G, Capuano E, Marmo M, Liuzzi R, Visciano B, Cianciaruso B, Salvatore M. Effects of enzyme-replacement therapy in patients with Anderson-Fabry disease: a prospective long-term cardiac magnetic resonance imaging study. Heart 2009; 95: 1103-1107
  • 121 Sado DM, White SK, Piechnik SK, Banypersad SM, Treibel T, Captur G, Fontana M, Maestrini V, Flett AS, Robson MD, Lachmann RH, Murphy E, Mehta A, Hughes D, Neubauer S, Elliott PM, Moon JC. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging 2013; 6: 392-398
  • 122 Messalli G, Imbriaco M, Avitabile G, Russo R, Iodice D, Spinelli L, Dellegrottaglie S, Cademartiri F, Salvatore M, Pisani A. Role of cardiac MRI in evaluating patients with Anderson-Fabry disease: assessing cardiac effects of long-term enzyme replacement therapy. Radiol Med 2012; 117: 19-28
  • 123 Piotrowska-Kownacka D, Kownacki L, Kuch M, Walczak E, Kosieradzka A, Fidzianska A, Krolicki L. Cardiovascular magnetic resonance findings in a case of Danon disease. J Cardiovasc Magn Reson 2009; 11: 12
  • 124 Carpenter JP, Grasso AE, Porter JB, Shah F, Dooley J, Pennell DJ. On myocardial siderosis and left ventricular dysfunction in hemochromatosis. J Cardiovasc Magn Reson 2013; 15: 24
  • 125 Wassmuth R, Abdel-Aty H, Bohl S, Schulz-Menger J. Prognostic impact of T2-weighted CMR imaging for cardiac amyloidosis. Eur Radiol 2011; 21: 1643-1650
  • 126 Syed IS, Glockner JF, Feng D, Araoz PA, Martinez MW, Edwards WD, Gertz MA, Dispenzieri A, Oh JK, Bellavia D, Tajik AJ, Grogan M. Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc Imaging 2010; 3: 155-164
  • 127 Maceira AM, Prasad SK, Hawkins PN, Roughton M, Pennell DJ. Cardiovascular magnetic resonance and prognosis in cardiac amyloidosis. J Cardiovasc Magn Reson 2008; 10: 54
  • 128 Maceira AM, Joshi J, Prasad SK, Moon JC, Perugini E, Harding I, Sheppard MN, Poole-Wilson PA, Hawkins PN, Pennell DJ. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2005; 111: 186-193
  • 129 Karamitsos TD, Piechnik SK, Banypersad SM, Fontana M, Ntusi NB, Ferreira VM, Whelan CJ, Myerson SG, Robson MD, Hawkins PN, Neubauer S, Moon JC. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 2013; 6: 488-497
  • 130 Bergman JW, Human DG, De Moor MM, Schulz JM. Effect of kwashiorkor on the cardiovascular system. Arch Dis Child 1988; 63: 1359-1362
  • 131 Essa E, Velez MR, Smith S, Giri S, Raman SV, Gumina RJ. Cardiovascular magnetic resonance in wet beriberi. J Cardiovasc Magn Reson 2011; 13: 41
  • 132 De Pergola G, Nardecchia A, Giagulli VA, Triggiani V, Guastamacchia E, Minischetti MC, Silvestris F. Obesity and heart failure. Endocr Metab Immune Disord Drug Targets 2013; 13: 51-57
  • 133 Iacovoni A, De Maria R, Gavazzi A. Alcoholic cardiomyopathy. J Cardiovasc Med (Hagerstown) 2010; 11: 884-892
  • 134 Piano MR. Alcoholic cardiomyopathy: incidence, clinical characteristics, and pathophysiology. CHEST 2002; 121: 1638-1650
  • 135 Essa E, Velez MR, Smith S, Giri S, Raman SV, Gumina RJ. Cardiovascular magnetic resonance in wet beriberi. J Cardiovasc Magn Reson 2011; 13: 41
  • 136 Shah RV, Abbasi SA, Neilan TG, Hulten E, Coelho-Filho O, Hoppin A, Levitsky L, de Ferranti S, Rhodes ET, Traum A, Goodman E, Feng H, Heydari B, Harris WS, Hoefner DM, McConnell JP, Seethamraju R, Rickers C, Kwong RY, Jerosch-Herold M. Myocardial tissue remodeling in adolescent obesity. J Am Heart Assoc 2013; 2: e000279
  • 137 Olivotto I, Maron BJ, Tomberli B, Appelbaum E, Salton C, Haas TS, Gibson CM, Nistri S, Servettini E, Chan RH, Udelson JE, Lesser JR, Cecchi F, Manning WJ, Maron MS. Obesity and its association to phenotype and clinical course in hypertrophic cardiomyopathy. J Am Coll Cardiol 2013; 62: 449-457
  • 138 Rider OJ, Lewandowski A, Nethononda R, Petersen SE, Francis JM, Pitcher A, Holloway CJ, Dass S, Banerjee R, Byrne JP, Leeson P, Neubauer S. Gender-specific differences in left ventricular remodelling in obesity: insights from cardiovascular magnetic resonance imaging. Eur Heart J 2013; 34: 292-299
  • 139 Rider OJ, Tayal U, Francis JM, Ali MK, Robinson MR, Byrne JP, Clarke K, Neubauer S. The effect of obesity and weight loss on aortic pulse wave velocity as assessed by magnetic resonance imaging. Obesity (Silver Spring) 2010; 18: 2311-2316
  • 140 Chavali V, Tyagi SC, Mishra PK. Predictors and prevention of diabetic cardiomyopathy. Diabetes Metab Syndr Obes 2013; 6: 151-160
  • 141 Wong TC, Piehler KM, Kang IA, Kadakkal A, Kellman P, Schwartzman DS, Mulukutla SR, Simon MA, Shroff SG, Kuller LH, Schelbert EB. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J 2013; 35: 657-664
  • 142 Shivu GN, Abozguia K, Phan TT, Ahmed I, Weaver R, Narendran P, Stevens M, Frenneaux M. Increased left ventricular torsion in uncomplicated type 1 diabetic patients: the role of coronary microvascular function. Diabetes Care 2009; 32: 1710-1712
  • 143 Kwong RY, Sattar H, Wu H, Vorobiof G, Gandla V, Steel K, Siu S, Brown KA. Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction. Circulation 2008; 118: 1011-1120
  • 144 Mahrholdt H, Wagner A, Judd RM, Sechtem U, Kim RJ. Eur Heart J 2005; 26: 1461-1474