Subscribe to RSS
DOI: 10.1055/s-0035-1559631
The Role of Iodine and Selenium in Autoimmune Thyroiditis

Abstract
Iodine and selenium (Se) are both essential elements to thyroid hormone economy, while they represent key players in the development of autoimmune thyroiditis.
Chronic high iodine intake has been associated in various studies with increased frequency of autoimmune thyroiditis. In susceptible individuals, iodine excess increases intra-thyroid infiltrating Th17 cells and inhibits T regulatory (TREG) cells development, while it triggers an abnormal expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in thyrocytes, thus inducing apoptosis and parenchymal destruction. As was shown in a mouse model, high iodine supply leads to changes in the immunogenicity of the thyroglobulin molecule, upregulation of vascular intercellular adhesion molecule-1 (ICAM-1), and reactive oxygen species (ROS) generation in the thyrocytes. Serum Se levels were found decreased in Hashimoto thyroiditis and especially in Graves’ disease as well as in thyroid-associated ophthalmopathy patients, the levels being related to the pathogenesis and outcome. Selenium is strongly involved, via the variable selenoproteins, in antioxidant, redox, and anti-inflammatory processes. Selenium enhances CD4+/CD25 FOXP3 and T regulatory cells activity while suppressing cytokine secretion, thus preventing apoptosis of the follicular cells and providing protection from thyroiditis. Selenium supplementation may be useful in autoimmune thyroid diseases, though, while usually well-tolerated, it should not be universally recommended, and it is also likely to be helpful for those with low Se status and autoimmunity. Broadly speaking, the achievement and maintenance of “selenostasis” as well as adequate urinary iodine excretion are mandatory to control disease, while, putatively, they may additionally be critical to preventing disease.
Publication History
Received: 24 March 2015
Accepted: 09 July 2015
Article published online:
11 September 2015
Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart,
Germany
-
References
- 1
Hollowell JG,
Staehling NW,
Flanders WD,
Hannon WH,
Gunter EW,
Spencer CA,
Braverman LE.
Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to
1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol
Metab 2002; 87: 489-499
MissingFormLabel
- 2
Lind P,
Langsteger W,
Molnar M,
Gallowitsch HJ,
Mikosch P,
Gomez I.
Epidemiology of thyroid diseases in iodine sufficiency. Thyroid 1998; 8: 1179-1183
MissingFormLabel
- 3
Bülow Pedersen I,
Knudsen N,
Jørgensen T,
Perrild H,
Ovesen L,
Laurberg P.
Large differences in incidences of overt hyper- and hypothyroidism associated
with a small difference in iodine intake: a prospective comparative
register-based population survey. J Clin Endocrinol Metab 2002; 87: 4462-4469
MissingFormLabel
- 4
Duntas LH.
Environmental factors and autoimmune thyroiditis. Nat Clin Pract Endocrinol Metab
2008; 4: 454-460
MissingFormLabel
- 5
Burek CL,
Talor MV.
Environmental triggers of autoimmune thyroiditis. J Autoimmun 2009; 33: 183-189
MissingFormLabel
- 6
Rose NR.
The genetics of autoimmune thyroiditis: the first decade. J Autoimmun 2011; 37: 88-94
MissingFormLabel
- 7
Duntas LH.
Environmental factors and thyroid autoimmunity. Ann Endocrinol (Paris) 2011; 72: 108-113
MissingFormLabel
- 8
Tanda ML,
Piantanida E,
Lai A,
Lombardi V,
Dalle Mule I,
Liparulo L,
Pariani N,
Bartalena L.
Thyroid autoimmunity and environment. Horm Metab Res 2009; 41: 436-442
MissingFormLabel
- 9
Eschler DC,
Hasham A,
Tomer Y.
Cutting edge: the etiology of autoimmune thyroid diseases. Clin Rev Allergy Immunol
2011; 41: 190-197
MissingFormLabel
- 10
Miranda DM,
Massom JN,
Catarino RM,
Santos RT,
Toyoda SS,
Marone MM,
Tomimori EK,
Monte O.
Impact of nutritional iodine optimization on rates of thyroid hypoechogenicity
and autoimmune thyroiditis: a cross-sectional, comparative study. Thyroid 2015; 25:
118-124
MissingFormLabel
- 11
Pedersen IB,
Knudsen N,
Carlé A,
Vejbjerg P,
Jørgensen T,
Perrild H,
Ovesen L,
Rasmussen LB,
Laurberg P.
A cautious iodization programme bringing iodine intake to a low recommended
level is associated with an increase in the prevalence of thyroid autoantibodies
in the population. Clin Endocrinol (Oxf) 2011; 75: 120-126
MissingFormLabel
- 12
Camargo RY,
Tomimori EK,
Neves SC,
GS Rubio I,
Galrão AL,
Knobel M,
Medeiros-Neto G.
Thyroid and the environment: exposure to excessive nutritional iodine increases
the prevalence of thyroid disorders in Sao Paulo, Brazil. Eur J Endocrinol 2008; 159:
293-299
MissingFormLabel
- 13
Vanderpump M.
Thyroid autoimmunity following an iodization programme. Clin Endocrinol (Oxf) 201
75: 10-11
MissingFormLabel
- 14
Teng X,
Shan Z,
Chen Y,
Lai Y,
Yu J,
Shan L,
Bai X,
Li Y,
Li N,
Li Z,
Wang S,
Xing Q,
Xue H,
Zhu L,
Hou X,
Fan C,
Teng W.
More than adequate iodine intake may increase subclinical hypothyroidism and
autoimmune thyroiditis: a cross-sectional study based on two Chinese communities
with different iodine intake levels. Eur J Endocrinol 2011; 164: 943-950
MissingFormLabel
- 15
Aghini Lombardi F,
Fiore E,
Tonacchera M,
Antonangeli L,
Rago T,
Frigeri M,
Provenzale AM,
Montanelli L,
Grasso L,
Pinchera A,
Vitti P.
The effect of voluntary iodine prophylaxis in a small rural community: the
Pescopagano survey 15 years later. J Clin Endocrinol Metab 2013; 98: 1031-1039
MissingFormLabel
- 16
Laurberg P,
Cerqueira C,
Ovesen L,
Rasmussen LB,
Perrild H,
Andersen S,
Pedersen IB,
Carlé A.
Iodine intake as a determinant of thyroid disorders in populations. Best Pract Res
Clin Endocrinol Metab 2010; 24: 13-27
MissingFormLabel
- 17
Allen EM,
Appel MC,
Braverman LE.
The effect of iodide ingestion on the development of spontaneous lymphocytic
thyroiditis in the diabetes-prone BB/W rat. Endocrinology 1986; 118: 1977-1981
MissingFormLabel
- 18
Rasooly L,
Burek CL,
Rose NR.
Iodine-induced autoimmune thyroiditis in NOD-H-2h4 mice. Clin Immunol Immunopathol
1996; 81: 287-292
MissingFormLabel
- 19
Rose NR,
Witebsky E.
Changes in the thyroid glands of rabbits following active immunization with
rabbit thyroid extract. J Immunol 1956; 76: 417-427
MissingFormLabel
- 20
Carayanniotis G.
Molecular parameters linking thyroglobulin iodination with autoimmune
thyroiditis. Hormones 2011; 10: 27-35
MissingFormLabel
- 21
Latrofa F,
Fiore E,
Rago T,
Antonangeli L,
Montanelli L,
Ricci D,
Provenzale MA,
Scutari M,
Frigeri M,
Tonacchera M,
Vitti P.
Iodine contributes to thyroid autoimmunity in humans by unmasking a cryptic
epitope on thyroglobulin. J Clin Endocrinol Metab 2013; 98: E1768-E1774
MissingFormLabel
- 22
Rose NR,
Saboori AM,
Rasooly L,
Burek CL.
The role of iodine in autoimmune thyroiditis. Crit Rev Immunol 1997; 17: 511-517
MissingFormLabel
- 23
Kolypetri P,
Noel NA,
Carayanniotis KA,
Carayanniotis G.
Iodine content of thyroglobulin in Nod.H2h4 mice developing iodine-accelerated
autoimmune thyroiditis. Hormones (Athens) 2010; 9: 151-160
MissingFormLabel
- 24
Weetman AP,
Cohen S,
Makgoba MW,
Borysiewicz LK.
Expression of an intercellular adhesion molecule, ICAM-1, by human thyroid
cells. J Endocrinol 1989; 122: 185-191
MissingFormLabel
- 25
Burek CL,
Rose NR.
Autoimmune thyroiditis and ROS. Autoimmun Rev 2008; 7: 530-537
MissingFormLabel
- 26
Colin IM,
Poncin S,
Levêque P,
Gallez B,
Gérard AC.
Differential regulation of the production of reactive oxygen species in Th1
cytokine-treated thyroid cells. Thyroid 2014; 24: 441-452
MissingFormLabel
- 27
Sharma RB,
Alegria JD,
Talor MV,
Rose NR,
Caturegli P,
Burek CL.
Iodine and IFN-gamma synergistically enhance intercellular adhesion molecule 1
expression on NOD.H2h4 mouse thyrocytes. J Immunol 2005; 174: 7740-7745
MissingFormLabel
- 28
O’Shea JJ,
Ma A,
Lipsky P.
Cytokines and autoimmunity. Nat Rev Immunol 2002; 2: 37-45
MissingFormLabel
- 29
Barin JG,
Afanasyeva M,
Talor MV,
Rose NR,
Burek CL,
Caturegli P.
Thyroid-specific expression of IFN-limits experimental autoimmune thyroiditis by
suppressing lymphocyte activation in cervical lymph nodes. J Immunol 2003; 170: 5523-5529
MissingFormLabel
- 30
Gadina MD,
Hilton JA,
Johnston A,
Morinobu A,
Lighvani YJ,
Zhou R,
Visconti J,
O’Shea J.
Signaling by type I and II cytokine receptors: ten years after. Curr Opin Immunol
2001; 13: 363-373
MissingFormLabel
- 31
Horie I,
Abiru N,
Nagayama Y,
Kuriya G,
Saitoh O,
Ichikawa T,
Iwakura Y,
Eguchi K.
T helper type 17 immune response plays an indispensable role for development of
iodine-induced autoimmune thyroiditis in nonobese diabetic-H2h4 mice. Endocrinology
2009; 150: 5135-5142
MissingFormLabel
- 32
Ruffilli I,
Ferrari SM,
Colaci M,
Ferri C,
Fallahi P,
Antonelli A.
IP-10 in autoimmune thyroiditis. Horm Metab Res 2014; 46: 597-602
MissingFormLabel
- 33
Cui SL,
Yu J,
Shoujun L.
Iodine Intake Increases IP-10 Expression in the Serum and Thyroids of Rats with
Experimental Autoimmune Thyroiditis. Int J Endocrinol 2014; 2014: 581069
MissingFormLabel
- 34
Li D,
Cai W,
Gu R,
Zhang Y,
Zhang H,
Tang K,
Xu P,
Katirai F,
Shi W,
Wang L,
Huang T,
Huang B.
Th17 cell plays a role in the pathogenesis of Hashimoto’s thyroiditis in
patients. Clin Immunol 2013; 149: 411-420
MissingFormLabel
- 35
Yang X,
Gao T,
Shi R,
Zhou X,
Qu J,
Xu J,
Shan Z,
Teng W.
Effect of iodine excess on Th1, Th2, Th17, and Treg cell subpopulations in the
thyroid of NOD.H-2h4 mice. Biol Trace Elem Res 2014; 159: 288-296
MissingFormLabel
- 36
Kristensen B,
Hegedüs L,
Madsen HO,
Smith TJ,
Nielsen CH.
Altered balance between self-reactive Th17 cells and Th10 cells and between
full-length FOXP3 and FOXP3 splice variants in Hashimoto’s thyroiditis. Clin Exp Immunol
2015; 180: 58-69
MissingFormLabel
- 37
Ban Y,
Tozaki T,
Tobe T,
Ban Y,
Jacobson EM,
Concepcion ES,
Tomer Y.
The regulatory T cell gene FOXP3 and genetic susceptibility to thyroid
autoimmunity: an association analysis in Caucasian and Japanese cohorts. J Autoimmun
2007; 28: 201-207
MissingFormLabel
- 38
Ehlers M,
Thiel A,
Papewalis C,
Domröse A,
Stenzel W,
Bernecker C,
Haase M,
Allelein S,
Schinner S,
Willenberg HS,
Feldkamp J,
Schott M.
Enhanced iodine supplementation alters the immune process in a transgenic mouse
model for autoimmune thyroiditis. Thyroid 2014; 24: 888-896
MissingFormLabel
- 39
Kolypetri P,
Carayanniotis G.
Apoptosis of NOD.H2 h4 thyrocytes by low concentrations of iodide is associated
with impaired control of oxidative stress. Thyroid 2014; 24: 1170-1178
MissingFormLabel
- 40
Yu X,
Li L,
Li Q,
Zang X,
Liu Z.
TRAIL and DR5 promote thyroid follicular cell apoptosis in iodine excess-induced
experimental autoimmune thyroiditis in NOD mice. Biol Trace Elem Res 2011; 143: 1064-1076
MissingFormLabel
- 41
Aaseth J,
Frey H,
Glattre E,
Norheim G,
Ringstad J,
Thomassen Y.
Selenium concentrations in the human thyroid gland. Biol Trace Elem Res 1990; 24:
147-152
MissingFormLabel
- 42
Beckett GJ,
Arthur JR.
Selenium and endocrine systems. J Endocrinol 2005; 184: 455-465
MissingFormLabel
- 43
Duntas LH.
Selenium and the thyroid: a close-knit connection. J Clin Endocrinol Metab 2010; 95:
5180-5188
MissingFormLabel
- 44
Toulis KA,
Anastasilakis AD,
Tzellos TG,
Goulis DG,
Kouvelas D.
Selenium supplementation in the treatment of Hashimoto's thyroiditis: a
systematic review and a meta-analysis. Thyroid 2010; 20: 1163-1173
MissingFormLabel
- 45
Fan Y,
Xu S,
Zhang H,
Cao W,
Wang K,
Chen G,
Di H,
Cao M,
Liu C.
Selenium supplementation for autoimmune thyroiditis: a systematic review and
meta-analysis. Int J Endocrinol 2014; 2014: 904573
MissingFormLabel
- 46
van Zuuren EJ,
Albusta AY,
Fedorowicz Z,
Carter B,
Pijl H.
Selenium Supplementation for Hashimoto's Thyroiditis: Summary of a Cochrane
Systematic Review. Eur Thyroid J 2014; 3: 25-31
MissingFormLabel
- 47
Mao J,
Pop VJ,
Bath SC,
Vader HL,
Redman CW,
Rayman MP.
Effect of low-dose selenium on thyroid autoimmunity and thyroid function in UK
pregnant women with mild-to-moderate iodine deficiency. Eur J Nutr. 2014 [Epub ahead
of print]
MissingFormLabel
- 48
Duntas LH,
Benvenga S.
Selenium: an element for life. Endocrine 2015; 48: 756-775
MissingFormLabel
- 49
Wimmer I,
Hartmann T,
Brustbauer R,
Minear G,
Dam K.
Selenium levels in patients with autoimmune thyroiditis and controls in lower
Austria. Horm Metab Res 2014; 46: 707-709
MissingFormLabel
- 50
Bülow Pedersen I,
Knudsen N,
Carlé A,
Schomburg L,
Köhrle J,
Jørgensen T,
Rasmussen LB,
Ovesen L,
Laurberg P.
Serum selenium is low in newly diagnosed Graves’ disease: a population-based
study. Clin Endocrinol (Oxf) 2013; 79: 584-590
MissingFormLabel
- 51
Wertenbruch T,
Willenberg HS,
Sagert C,
Nguyen TB,
Bahlo M,
Feldkamp J,
Groeger C,
Hermsen D,
Scherbaum WA,
Schott M.
Serum selenium levels in patients with remission and relapse of graves’
disease. Med Chem 2007; 3: 281-284
MissingFormLabel
- 52
Khong JJ,
Goldstein RF,
Sanders KM,
Schneider H,
Pope J,
Burdon KP,
Craig JE,
Ebeling PR.
Serum selenium status in Graves’ disease with and without orbitopathy: a
case-control study. Clin Endocrinol (Oxf) 2014; 80: 905-910
MissingFormLabel
- 53
Marcocci C,
Kahaly GJ,
Krassas GE,
Bartalena L,
Prummel M,
Stahl M,
Altea MA,
Nardi M,
Pitz S,
Boboridis K,
Sivelli P,
von Arx G,
Mourits MP,
Baldeschi L,
Bencivelli W,
Wiersinga W.
Selenium and the course of mild Graves' orbitopathy. European Group on Graves’
Orbitopathy. N Engl J Med 2011; 364: 1920-1931
MissingFormLabel
- 54
Hoffmann FW,
Hashimoto AC,
Shafer LA,
Dow S,
Berry MJ,
Hoffmann PR.
Dietary selenium modulates activation and differentiation of CD4+ T cells in
mice through a mechanism involving cellular free thiols. J Nutr 2010; 140: 1155-1161
MissingFormLabel
- 55
Hoffmann PR.
Mechanisms by which selenium influences immune responses. Arch Immunol Ther Exp (Warsz)
2007; 55: 289-297
MissingFormLabel
- 56
Carlson BA,
Yoo MH,
Sano Y,
Sengupta A,
Kim JY,
Irons R,
Gladyshev VN,
Hatfield DL,
Park JM.
Selenoproteins regulate macrophage invasiveness and extracellular matrix related
gene expression. BMC Immunol 2009; 10: 57
MissingFormLabel
- 57
Huang Z,
Rose AH,
Hoffmann PR.
The role of selenium in inflammation and immunity: from molecular mechanisms to
therapeutic opportunities. Antioxid Redox Signal 2012; 16: 705-743
MissingFormLabel
- 58
Fisfalen 1 ME,
Soltani K,
Kaplan E,
Palmer EM,
van Seventer GA,
Straus FH,
Diaz M,
Ober C,
DeGroot LJ.
Evaluating the role of Th0 and Th1 clones in autoimmune thyroid disease by use
of Hu-SCID chimeras. Clin Immunol Immunopathol 1997; 85: 253-264
MissingFormLabel
- 59
Takahashi T,
Sakaguchi S.
Naturally arising CD25+CD4+ regulatory T cells in maintaining immunologic
self-tolerance and preventing autoimmune disease. Curr Mol Med 2003; 3: 693-706
MissingFormLabel
- 60
Flynn JC,
Meroueh C,
Snower DP,
David CS,
Kong YM.
Depletion of CD4+CD25+ regulatory T cells exacerbates sodium iodide-induced
experimental autoimmune thyroiditis in human leucocyte antigen DR3 (DRB1*0301)
transgenic class II-knock-out non-obese diabetic mice. Clin Exp Immunol 2007; 147:
547-554
MissingFormLabel
- 61
Balázs C,
Kaczur V.
Effect of Selenium on HLA-DR expression of thyrocytes. Autoimmune Dis 2012; 74635
MissingFormLabel
- 62
Tan L,
Sang ZN,
Shen J,
Wu YT,
Yao ZX,
Zhang JX,
Zhao N,
Zhang WQ.
Selenium supplementation alleviates autoimmune thyroiditis by regulating
expression of TH1/TH2 cytokines. Biomed Environ Sci 2013; 26: 920-925
MissingFormLabel
- 63
Krysiak R,
Okopien B.
The effect of levothyroxine and selenomethionine on lymphocyte and monocyte
cytokine release in women with Hashimoto’s thyroiditis. J Clin Endocrinol Metab 2011;
96: 2206-2215
MissingFormLabel
- 64
Gordon S,
Taylor PR.
Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005; 5: 953-964
MissingFormLabel
- 65
Parnham MJ,
Winkelmann J,
Leyck S.
Macrophage, lymphocyte and chronic inflammatory responses in selenium deficient
rodents. Association with decreased glutathione peroxidase activity. Int J Immunopharmacol
1983; 5455-5461
MissingFormLabel
- 66
Carlson BA,
Yoo MH,
Conrad M,
Gladyshev VN,
Hatfield DL,
Park JM.
Protein kinase-regulated expression and immune function of thioredoxin reductase
1 in mouse macrophages. Mol Immunol 2011; 49: 311-316
MissingFormLabel
- 67
Santos LR,
Durães C,
Mendes A,
Prazeres H,
Alvelos MI,
Moreira CS,
Canedo P,
Esteves C,
Neves C,
Carvalho D,
Sobrinho-Simões M,
Soares P.
A polymorphism in the promoter region of the selenoprotein S gene (SEPS1)
contributes to Hashimoto’s thyroiditis susceptibility. J Clin Endocrinol Metab 2014;
99: E719-E723
MissingFormLabel
- 68
Sutmuller R,
Garritsen A,
Adema GJ.
Regulatory T cells and toll-like receptors: regulating the regulators. Ann Rheum Dis
2007; 66 (Suppl. 03) iii91-iii95
MissingFormLabel