Synlett, Table of Contents Synlett 2016; 27(05): 736-740DOI: 10.1055/s-0035-1561304 cluster © Georg Thieme Verlag Stuttgart · New YorkRadical Pentafluorosulfanylphenylation of Styrenes by Photoredox Catalysis Yanjie Li Chemical Resources Laboratory, Tokyo Institute of Technology, R1-27, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan Email: koike.t.ad@m.titech.ac.jp Email: makita@res.titech.ac.jp , Takashi Koike* Chemical Resources Laboratory, Tokyo Institute of Technology, R1-27, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan Email: koike.t.ad@m.titech.ac.jp Email: makita@res.titech.ac.jp , Munetaka Akita* Chemical Resources Laboratory, Tokyo Institute of Technology, R1-27, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan Email: koike.t.ad@m.titech.ac.jp Email: makita@res.titech.ac.jp› Author AffiliationsRecommend Article Abstract Buy Article All articles of this category Abstract Simple and versatile radical pentafluorosulfanylphenylation (SF5-phenylation) of styrenes by photoredox catalysis has been developed. Pentafluorosulfanylphenyliodonium salts (SF5-phenyliodonium salts), which can be easily prepared from SF5-phenyl iodides and handled without special caution, serve as precursors of SF5-phenyl radicals by action of a ruthenium photoredox catalyst, [Ru(bpy)3]2+. Radical phenylation of styrenes combined with solvolysis or deprotonation leads to a variety of SF5-phenyl-containing compounds via a single step. Key words Key wordsphotoredox catalysis - pentafluorosulfanyl group - diaryliodonium salt - phenyl radical - radical reaction - arylation - photochemistry Full Text References References and Notes 1a Kirsch P, Bremer M, Heckmeier M, Tarumi K. Angew. Chem. Int. Ed. 1999; 38: 1989 1b Kirsch P, Bremer M. Angew. Chem. Int. Ed. 2000; 39: 4216 1c Altomonte S, Zanda M. J. Fluorine Chem. 2012; 143: 57 1d Savoie PR, Welch JT. Chem. Rev. 2015; 115: 1130 2a Welch JT, Lim DS. Bioorg. Med. Chem. 2007; 15: 6659 2b Wipf P, Mo T, Geib SJ, Caridha D, Dow GS, Gerena L, Roncal N, Milner EE. Org. Biomol. Chem. 2009; 7: 4163 2c Mo T, Mi X, Milner EE, Dow GS, Wipf P. Tetrahedron Lett. 2010; 51: 5137 3 Umemoto T, Garrick LM, Saito N. Beilstein J. Org. Chem. 2012; 8: 461 For selected examples of synthesis of SF5-arenes, see: 4a Sipyagin AM, Bateman CP, Tan Y.-T, Thrasher JS. J. Fluorine Chem. 2001; 112: 287 4b Sipyagin AM, Enshov VS, Kashtanov SA, Bateman CP, Mullen BD, Tan Y.-T, Thrasher JS. J. Fluorine Chem. 2004; 125: 1305 4c Sipyagin AM, Bateman CP, Matsev AV, Waterfeld A, Jilek RE, Key CD, Szulczewski GJ, Thrasher JS. J. Fluorine Chem. 2014; 167: 203 4d Kanishchev OS, Dolbier WR. Jr. Angew. Chem. Int. Ed. 2015; 54: 280 For selected examples of SF5-arylation of organic molecules, see: 5a Bowden RD, Comina PJ, Greenhall MP, Kariuki BM, Loveday A, Philp D. Tetrahedron 2000; 56: 3399 5b Beier P, Pastýříková T, Vida N, Lakobson G. Org. Lett. 2011; 13: 1466 5c Frischmuth A, Unsinn A, Groll K, Stadtmüller H, Knochel P. Chem. Eur. J. 2012; 18: 10234 5d Wang C, Yu Y.-B, Fan S, Zhang X. Org. Lett. 2013; 15: 5004 5e Joliton A, Carreira EM. Org. Lett. 2013; 15: 5147 5f Shrestha R, Dorn SC. M, Weix DJ. J. Am. Chem. Soc. 2013; 135: 751 5g Okazaki T, Laali KK, Bunge SD, Adas SK. Eur. J. Org. Chem. 2014; 1630 5h Matsuzaki K, Okuyama K, Tokunaga E, Saito N, Shiro M, Shibata N. Org. Lett. 2015; 17: 3038 For selected reviews on photoredox catalysis, see: 6a Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527 6b Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102 6c Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828 6d Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322 6e Hari DP, König B. Angew. Chem. Int. Ed. 2013; 52: 4734 6f Reckenthäler M, Griesbeck AG. Adv. Synth. Catal. 2013; 355: 2727 6g Hopkinson MN, Sahoo B, Li J.-L, Glorius F. Chem. Eur. J. 2014; 20: 3874 6h Koike T, Akita M. Inorg. Chem. Front. 2014; 1: 562 6i Koike T, Akita M. Top. Catal. 2014; 57: 967 6j Akita M, Koike T. Compt. Rend. Chim. 2015; 18: 742 For aryldiazonium salts, see: 7a Cao-Yelo H, Deronzier A. J. Chem. Soc., Perkin Trans. 2 1984; 1093 7b Kalyani D, McMurtrey KB, Neufeldt SR, Sanford MS. J. Am. Chem. Soc. 2011; 133: 18566 7c Schroll P, Hari DP, König B. ChemistryOpen 2012; 1: 130 7d Hari DP, Schroll P, König B. J. Am. Chem. Soc. 2012; 134: 2958 7e Sahoo B, Hopkinson MN, Glorius F. J. Am. Chem. Soc. 2013; 135: 5505 7f Hari DP, Hering T, König B. Angew. Chem. Int. Ed. 2014; 53: 725 For aryliodonium salts, see: 7g Neufeldt SR, Sanford MS. Adv. Synth. Catal. 2012; 354: 3517 7h Liu Y.-X, Xue D, Wang J.-D, Zhao C.-J, Zou Q.-Z, Wang C, Xiao J. Synlett 2013; 24: 507 7i Baralle A, Fensterbank L, Goddard J.-P, Ollivier C. Chem. Eur. J. 2013; 19: 10809 7j Fumagalli G, Boyd S, Greaney MF. Org. Lett. 2013; 15: 4398 7k Tobisu M, Furukawa T, Chatani N. Chem. Lett. 2013; 42: 1203 For arylhalides, see: 7l Nguyen JD, D’Amato EM, Narayanam JM. R, Stephenson CR. J. Nat. Chem. 2012; 4: 854 7m Kim H, Lee C. Angew. Chem. Int. Ed. 2012; 51: 12303 7n Cheng Y, Gu X, Li P. Org. Lett. 2013; 15: 2664 7o Ghosh I, Ghosh T, Bardagi JI, König B. Science 2014; 346: 725 For arylsulfonium salts, see: 7p Donck S, Baroudi A, Fensterbank L, Goddard J.-P, Ollivier C. Adv. Synth. Catal. 2013; 355: 1477 For arylsulfonyl chlorides, see: 7q Deng G.-B, Wang Z.-Q, Xia J.-D, Qian P.-C, Song R.-J, Hu M, Gong L.-B, Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 1535 For arylborates, see: 7r Yasu Y, Koike T, Akita M. Adv. Synth. Catal. 2012; 354: 3414 8a Yasu Y, Koike T, Akita M. Angew. Chem. Int. Ed. 2012; 51: 9567 8b Yasu Y, Koike T, Akita M. Org. Lett. 2013; 15: 2136 8c Koike T, Akita M. Synlett 2013; 24: 2492 8d Tomita R, Yasu Y, Koike T, Akita M. Angew. Chem. Int. Ed. 2014; 53: 7144 8e Miyazawa K, Koike T, Akita M. Chem. Eur. J. 2015; 21: 11677 8f Tomita R, Koike T, Akita M. Angew. Chem. Int. Ed. 2015; 54: 12923 9 Experimental Procedures for the Synthesis of 1a To a stirred solution of pentafluoro(4-iodophenyl)-λ6-sulfane (331 mg, 1.0 mmol) in CH2Cl2–CF3CH2OH (v/v = 1:1, 10.0 mL) was added 69–75 wt% grade of mCPBA (230 mg, 1.0 mmol), followed by addition of TsOH (190 mg, 1.0 mmol). The resulting solution was stirred for 3 h at 40 °C and concentrated under a stream of air, then Et2O (20.0 mL) was added to the residue. The precipitate was filtered and dried in vacuo to afford Koser-type reagent 1′a (459 mg, 89% yield). To a stirred solution of mesitylene (108 mg, 1.0 mmol) in CF3CH2OH (5.0 mL) was added 1′a in one portion at r.t., and the reaction mixture was stirred for 24 h. The mixture was concentrated, and the resulting crude product was precipitated by addition of Et2O. The precipitate was filtered and dried in vacuo to give the product 1a (509 mg, 89%). Recrystallization from MeOH–CH2Cl2 afforded colorless crystals suitable for single-crystal X-ray measurement. Comound 1a: 1H NMR (500 MHz, CD3OD, r.t.): δ = 2.37–2.38 (6 H, Me in mesityl and tosyl), 2.66 (s, 6 H, Me in mesityl), 7.22 (d, J = 7.5 Hz, 2 H, tosyl), 7.29 (s, 2 H, mesityl), 7.70 (d, J = 7.0 Hz, 2 H, tosyl), 7.96 (d, J = 8.0 Hz, 2 H, SF5Ph), 8.05 (d, J = 8.0 Hz, 2 H, SF5Ph). 19F NMR (376 MHz, CD3OD, r.t.): δ = 60.1 (d, J = 148.1 Hz, 4 F), 78.9 (quin, J = 149.5 Hz, 1 F). 13C NMR (125 MHz, CD3OD, r.t.): δ = 21.0 (p-Me in mesityl), 21.3 (Me in tosyl), 27.1 (o-Me in mesityl), 117.5 (mesityl), 122.5 (mesityl), 126.9 (tosyl), 129.8 (tosyl), 130.5 (m, SF5Ph), 131.5 (mesityl), 135.8 (SF5Ph), 141.6 (tosyl), 143.6 (tosyl), 143.7 (SF5Ph), 146.3 (mesityl), 157.1 (apparent t, J = 22.9 Hz, SF5Ph). HRMS (ESI-TOF): m/z calcd for [C15H15F5SI]+: 448.9854; found: 448.9856. For related synthetic method, see: Dohi T., Yamaoka N., Kita Y.; Tetrahedron; 2010, 66: 5775. 10 Compound 1a: CCDC 1431812 contains the supplementary crystallographic data. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Supplementary Material Supplementary Material Supporting Information