Synlett, Inhaltsverzeichnis Synlett 2016; 27(09): 1403-1407DOI: 10.1055/s-0035-1561568 letter © Georg Thieme Verlag Stuttgart · New YorkExpedient Synthesis of Fmoc-(S)-γ-Fluoroleucine and Late-Stage Fluorination of Peptides Roberto Fanelli* Institut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France eMail: roberto.fanelli@umontpellier.fr eMail: florine.cavelier@umontpellier.fr , Jean Martinez Institut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France eMail: roberto.fanelli@umontpellier.fr eMail: florine.cavelier@umontpellier.fr , Florine Cavelier* Institut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France eMail: roberto.fanelli@umontpellier.fr eMail: florine.cavelier@umontpellier.fr› InstitutsangabenArtikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract A concise synthesis of (S)-γ-fluoroleucine is described in five steps from commercially available compounds, with an overall yield of 57%. The Markovnikov hydrofluorination reaction of the unsaturated amino acid precursor as last step of the synthesis proved to be effective. This fluorination can also be performed directly on a short peptide model with the same efficiency. This reaction could be in principle applicable for the preparation of radiolabeled amino acids and peptides. Key words Key words(S)-γ-fluoroleucine - peptides - stereoselective synthesis - Selectfluor - late-stage fluorination Volltext Referenzen References and Notes 1a Carpentier C, Godbout R, Otis F, Voyer N. Tetrahedron Lett. 2015; 56: 1244 1b Hunter L, Butler S, Ludbrook SB. Org. Biomol. Chem. 2012; 10: 8911 1c Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320 1d Muller K, Faeh C, Diederich F. Science 2007; 317: 1881 2a Zhu R.-Y, Tanaka K, Li G.-C, He J, Fu H.-Y, Li S.-H, Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 7067 2b Zhang Q, Yin X.-S, Chen K, Zhang S.-Q, Shi B.-F. J. Am. Chem. Soc. 2015; 137: 8219 2c Miao J, Yang K, Kurek M, Ge H. Org. Lett. 2015; 17: 3738 2d Wuttke C, Ford R, Lilley M, Grabowska U, Wiktelius D, Jackson RF. W. Synlett 2012; 243 2e Kee CW, Chin KF, Wong MW, Tan C.-H. Chem. Commun. 2014; 50: 8211 3 Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315 4 Bonetti A, Pellegrino S, Das P, Yuran S, Bucci R, Ferri N, Meneghetti F, Castellano C, Reches M, Gelmi ML. Org. Lett. 2015; 17: 4468 5 Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2015; 54: 3216 6 Papageorgiou C, Borer X, French RR. Bioorg. Med. Chem. Lett. 1994; 4: 267 7 Limanto J, Shafiee A, Devine PN, Upadhyay V, Desmond RA, Foster BR, Gauthier DR, Reamer RA, Volante RP. J. Org. Chem. 2005; 70: 2372 8 Truong VL, Gauthier JY, Boyd M, Roy B, Scheigetz J. Synlett 2005; 1279 9 Nadeau C, Gosselin F, O’Shea PD, Davies IW, Volante RP. Synlett 2006; 291 10 Padmakshan D, Bennett SA, Otting G, Easton CJ. Synlett 2007; 1083 11 Fanelli R, Jeanne-Julien L, René A, Martinez J, Cavelier F. Amino Acids 2015; 47: 1107 12 Lygo B, Andrews BI. Acc. Chem. Res. 2004; 37: 518 13 Barker TJ, Boger DL. J. Am. Chem. Soc. 2012; 134: 13588 14 Croft AK, Easton CJ, Radom L. J. Am. Chem. Soc. 2003; 125: 4119 15 Gottler LM, Lee H.-Y, Shelburne CE, Ramamoorthy A, Marsh EN. G. ChemBioChem 2008; 9: 370 16 Feeney J, McCormick JE, Bauer CJ, Birdsall B, Moody CM, Starkmann BA, Young DW, Francis P, Havlin RH, Arnold WD, Oldfield E. J. Am. Chem. Soc. 1996; 118: 8700 17a Fraser SA, Easton CJ. Aust. J. Chem. 2015; 68: 9 17b Arthur IN, Hennessy JE, Padmakshan D, Stigers DJ, Lesturgez S, Fraser SA, Liutkus M, Otting G, Oakeshott JG, Easton CJ. Chem. Eur. J. 2013; 19: 6824 18a Qiu X.-L, Qing F.-L. Eur. J. Org. Chem. 2011; 3261 18b O’Shea PD, Chen C.-y, Gauvreau D, Gosselin F, Hughes G, Nadeau C, Volante RP. J. Org. Chem. 2009; 74: 1605 18c Formicola L, Maréchal X, Basse N, Bouvier-Durand M, Bonnet-Delpon D, Milcent T, Reboud-Ravaux M, Ongeri S. Bioorg. Med. Chem. Lett. 2009; 19: 83 19a Bouhlel A, Zhou D, Li A, Yuan L, Rich KM, McConathy J. J. Med. Chem. 2015; 58: 3817 19b Wang L, Zha Z, Qu W, Qiao H, Lieberman BP, Plössl K, Kung HF. Nucl. Med. Biol. 2012; 39: 933 19c Wang L, Qu W, Lieberman BP, Plössl K, Kung HF. Nucl. Med. Biol. 2011; 38: 53 20 Fmoc-(S)-γ-fluoroleucine (5) Iron(III) oxalate hexahydrate (319 mg, 0.33 mmol) was stirred in H2O (13.8 mL) until complete dissolution (ca. 2 h). The solution was cooled to 0 °C and degassed for 10 min. Selectfluor (234 mg, 0.66 mmol) and MeCN (6.6 mL) were added to the reaction mixture. A solution of 4 (135 mg, 0.33 mmol) in MeCN (6.6 mL) was transferred into the reaction mixture, and NaBH4 (37.5 mg, 0.99 mmol) was added at 0 °C. After 2 min, the reaction was treated with an additional portion of NaBH4 (37.5 mg, 0.99 mmol). The resulting mixture was stirred for 30 min at 0 °C before being quenched by addition of 28–30% aq NH4OH (6.6 mL). The mixture was extracted with 10% MeOH in CH2Cl2, the organic layer was dried over MgSO4, and concentrated under reduced pressure. Flash chromatography (SiO2, cyclohexane–EtOAc = 95:5) provided 5 as a colorless oil (105 mg, 76%). 1H NMR (300 MHz, CDCl3): δ = 1.32 (d, J = 5.2 Hz, 3 H), 1.35 (s, 3 H), 1,38 (s, 9 H), 1.90–2.08 (m, 2 H), 4.15 (t, J = 7.1 Hz, 1 H), 4.25–4.35 (m, 2 H), 5.35 (br d, J = 7.3 Hz, 1 H), 7.22 (dt, J 1 = 1.2, J 2 = 7.4 Hz, 2 H), 7.31 (t, J = 7.4 Hz, 2 H), 7.52 (d, J = 7.3 Hz, 2 H), 7.70 (d, J = 7.4 Hz, 2 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 171.4, 155.7, 143.9, 143.8, 141.3, 127.7, 127.0, 125.1, 119.9, 95.0 (J = 166.1 Hz), 82.2, 67.0, 52.0, 47.2, 42.7 (J = 22.1 Hz), 27.9, 27.4 (J = 24.6 Hz), 26.6 (J = 24.6 Hz) ppm. 19F NMR (376 MHz, CDCl3): δ = –135.7 ppm. ESI-HRMS: m/z C25H30NO4NaF calculated [M + Na]: 450.2053; found: 450.2057. Compound 6 The dipeptide Boc-Ala-Gly-OH was directly coupled to the free amino ester extracted after acidic cleavage of benzophenonimine derivative 3, in DMF, in the presence of BOP (1 equiv) and DIPEA (3 equiv). The mixture was stirred for 24 h at room temperature. The solvent was evaporated, and the residue was diluted with EtOAc and consecutively extracted with 1 M KHSO4 (2×), aq NaHCO3 (2×) and brine (2×), dried over Na2SO4, and the solvent was evaporated under reduced pressure to afford the crude product. Flash chromatography (SiO2, cyclohexane–EtOAc = 20:80) provided 6 as a colorless oil (210 mg, 85%). 1H NMR (300 MHz, CDCl3): δ = 1.35 (d, J = 7.1 Hz, 2 H), 1.41 (s, 9 H), 1.43 (s, 9 H), 1.43 (s, 3 H), 2.36 (dd J 1 = 7.9 Hz, J 2 = 13.9 Hz, 1 H), 2.48 (dd J 1 = 6.1 Hz, J 2 = 13.9 Hz, 1 H), 3.94 (ddd, J 1 = 5.5 Hz, J 2 = 16.6 Hz, J 3 = 34.0 Hz, 2 H), 4.17–4.22 (m, 1 H), 4.55 (q, J = 6.2 Hz, 1 H), 4.72 (s, 1 H), 4.80 (t, J = 1.5 Hz, 2 H), 5.34 (br d, J = 6.9 Hz, 1 H), 6.87 (br d, J = 7.7 Hz, 1 H), 7.16 (br t, J = 5.2 Hz, 1 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 173.4, 171.0, 168.5, 155.5, 140.5, 114.3, 103.3, 82.2, 80.0, 51. 2, 50.2, 42.9, 40.6, 28.3, 27.9, 21.8, 18.4 ppm. ESI-HRMS: m/z calcd for C20H35N3O6Na [M + Na]: 436.2421; found: 436.2424. Compound 7 Following the procedure described for compound 5, peptide 7 was prepared starting from precursor 6 (37 mg, 0.089 mmol) and purified by flash chromatography (SiO2, n-hexane–EtOAc = 30:70) providing the desired compound as a colorless oil (30 mg, 77%). 1H NMR (300 MHz, CDCl3): δ = 1.29 (d, J = 8.9 Hz, 3 H), 1.31 (d, J = 7.0 Hz, 3 H), 1.37 (s, 9 H), 1.37 (s, 9 H), 1.93–2.08 (m, 2 H), 3.90 (ddd, J 1 = 5.6 Hz, J 2 = 16.8 Hz, J 3 = 37.4 Hz, 2 H), 4.06–4.16 (m, 1 H), 4.44–4.51 (m, 1 H), 5.01 (br d, J = 6.8 Hz, 1 H), 6.71 (br d, J = 6.0 Hz, 1 H), 6.82 (br t, J = 5.0 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 173.1, 170.8, 168.3, 155.5, 95.1 (J = 165.9 Hz), 82.2, 80.3, 50.4, 43.0, 42.1 (J = 22.0 Hz), 28.3, 27.8, 27.3 (J = 25.6 Hz), 26.5 (J = 24.5 Hz), 18.2 ppm. 19F NMR (376 MHz, CDCl3): δ = –135.6 ppm. ESI-HRMS: m/z calcd for C20H37N3O6F [M + H]: 434.2666; found: 434.2666. Compound 8 Cbz-l-Asp(OBzl)-OH was directly coupled to the free amine extracted after acid cleavage of benzophenonimine derivative 3 in a solution of the free amino ester in DMF in the presence of HATU (1 equiv) and DIPEA (3 equiv). The mixture was stirred for 24 h at room temperature. The solvent was evaporated, and the residue was diluted with EtOAc and consecutively extracted with 1 M KHSO4 (2×), aq NaHCO3 (2×) and brine (2×), dried over Na2SO4, and the solvent was evaporated under reduced pressure to afford the crude product. Flash chromatography (SiO2, cyclohexane–EtOAc = 80:20) provided 8 as colorless oil (590 mg, 75%). 1H NMR (300 MHz, CDCl3): δ = 1.47 (s, 9 H), 1.76 (s, 3 H), 2.43 (ddd, J 1 = 6.0 Hz, J 2 = 14.0 Hz, J 3 = 52.4 Hz, 2 H), 2.76 (dd, J 1 = 6.4 Hz, J 2 = 17.2 Hz, 1 H), 3.08 (dd, J 1 = 4.1 Hz, J 2 = 17.2 Hz, 1 H), 4.51–4.55 (m, 1 H), 4.63–4.67 (m, 1 H), 4.74 (s, 1 H), 4.83 (s, 1 H), 5.11–5.19 (m, 4 H), 5.95 (br d, J = 8.4 Hz, 1 H), 6.88 (br d, J = 6.7 Hz, 1 H), 7.36–7.39 (m, 10 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 171.7, 170.6, 169.8, 155.9, 140.6 136.0, 135.3, 128.6, 128.4, 128.3, 128.1, 114.5, 82.1, 67.2, 66.9, 51.3, 50.8, 40.5, 36.2, 27.9, 21.8 ppm. ESI-HRMS: m/z calcd for C29H37N2O7 [M + H]: 525.2603; found: 525.2601. Compound 9 Following the same procedure described for compound 5, peptide 9 was prepared starting from precursor 8 (170 mg, 0.324 mmol) and purified by flash chromatography (SiO2, cyclohexane–EtOAc = 80:20) providing the desired compound as a colorless oil (133 mg, 75%). 1H NMR (300 MHz, CDCl3): δ = 1.36 (d, J = 11.2 Hz, 3 H), 1.41 (d, J = 11.2 Hz, 3 H), 1.44 (s, 9 H), 1.93–2.15 (m, 2 H), 2.74 (dd, J 1 = 6.17 Hz, J 2 = 17.3 Hz, 1 H), 3.10 (dd, J 1 = 3.9, J 2 = 17.1 Hz, 1 H), 4.46–4.51 (m, 1 H), 4.61–4.66 (m, 1 H), 5.08–5.16 (m, 4 H), 5.93 (d, J = 8.4 Hz, 1 H), 7.04 (d, J = 6.0 Hz, 1 H), 7.34–7.36 (m, 10 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 171.7, 170.5, 169.9, 156.0, 136.0, 135.3, 128.6, 128.5, 128.3, 128.3, 128.2, 128.1, 95.5 (J = 165.8 Hz), 82.1, 67.2, 66.9, 50.8, 50.7, 42.0 (J = 21.8 Hz), 36.0, 27.8, 27.4 (J = 24.5 Hz), 26.3 (J = 25.5 Hz) ppm. 19F NMR (376 MHz, CDCl3): δ = –135.4 ppm. ESI-HRMS: m/z calcd for C29H38N2O7F [M + H]: 545.2659; found: 545.2663. Compound 10 Boc-l-Lys(Cbz)-OH was directly coupled to the free amine extracted after acid cleavage of benzophenonimine derivative 3 in a solution of the free amino ester in DMF in the presence of HATU (1 equiv) and DIPEA (3 equiv). The mixture was stirred for 24 h at room temperature. The solvent was evaporated, and the residue was diluted with EtOAc and consecutively extracted with 1 M KHSO4 (2×), aqueous NaHCO3 (2×) and brine (2×), dried over Na2SO4, and the solvent was evaporated under reduced pressure to afford the crude product. Flash chromatography (SiO2, cyclohexane–EtOAc = 70:30) provided 10 as colorless oil (600 mg, 73%). 1H NMR (300 MHz, CDCl3): δ = 1.30–1.59 (m, 25 H), 1.67 (s, 3 H), 1.71–1.80 (m, 2 H), 2.36 (ddd, J 1 = 6.0 Hz, J 2 = 14.0 Hz, J 3 = 52.4 Hz, 2 H), 3.10–3.15 (m, 2 H), 4.01 (m, 1 H), 4.46 (m, 1 H), 4.67 (s, 1 H), 4.75 (t, J = 1.5 Hz, 1 H), 4.95 (br s, 1 H), 5.02 (s, 2 H), 5.06 (br s, 1 H), 6.33 (d, J = 7.1 Hz, 1 H), 7.22–7.28 (m, 5 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 171.6, 171.0, 156.5, 155.6, 140.6, 136.6, 128.5, 128.1, 128.0, 114.4, 82.2, 79.9, 66.6, 54.1, 51.0, 40.6, 40.4, 32.0, 29.3, 28.3, 27.9, 22.3, 21.9 ppm. ESI-HRMS: m/z calcd for C29H46N3O7 [M + H]: 548.3336; found: 548.3336. Compound 11 Following the same procedure described for compound 5, peptide 11 was prepared starting from precursor 10 (170 mg, 0.310 mmol) and purified by flash chromatography (SiO2, cyclohexane–EtOAc = 80:20) providing the desired compound as a colorless oil (130 mg, 74%) 1H NMR (300 MHz, CDCl3): δ = 1.36–1.64 (m, 30 H), 1.79–1.85 (m, 1 H), 1.97–2.14 (m, 2 H), 3.17–3.22 (m, 2 H), 4.09 (m, 1 H), 4.50–4.52 (m, 2 H), 5.01 (br s, 1 H), 5.09 (s, 2 H), 5.11 (br s, 1 H), 6.57 (d, J = 5.1 Hz), 7.29–7.35 (m, 5 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 171.5, 170.8, 156.5, 155.5, 136.6, 128.4, 128.1, 128.0, 95.2 (J = 165.5 Hz), 82.2, 66.6, 54.1, 50.4, 42.2 (J = 21.9 Hz), 40.4, 32.0, 29.3, 28.3, 27.8, 27.4 (J = 24.3 Hz), 26.9, 26.4 (J = 24.5 Hz), 22.2 ppm. 19F NMR (376 MHz, CDCl3): δ = –135.75 ppm. ESI-HRMS: m/z calcd for C29H47N3O7F [M + H]: 568.3399; found: 568.3398. 21 Teare H, Robins EG, Kirjavainen A, Forsback S, Sandford G, Solin O, Luthra SK, Gouverneur V. Angew. Chem. Int. Ed. 2010; 49: 6821 22 Mizuta S, Stenhagen IS. R, O’Duill M, Wolstenhulme J, Kirjavainen AK, Forsback SJ, Tredwell M, Sandford G, Moore PR, Huiban M, Luthra SK, Passchier J, Solin O, Gouverneur V. Org. Lett. 2013; 15: 2648 23 Richter S, Wuest F. Molecules 2014; 19: 20536 24a Maschauer S, Greff C, Einsiedel J, Ott J, Tripal P, Hübner H, Gmeiner P, Prante O. Bioorg. Med. Chem. 2015; 23: 4026 24b Mascarin A, Valverde IE, Vomstein S, Mindt TL. Bioconjugate Chem. 2015; 26: 2143 24c Jia Y, Shi W, Zhou Z, Wagh NK, Fan W, Brusnahan SK, Garrison JC. Nucl. Med. Biol. 2015; 42: 816 Zusatzmaterial Zusatzmaterial Supporting Information