Semin Liver Dis 2016; 36(01): 087-098
DOI: 10.1055/s-0036-1571295
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Antifibrotic Therapies: Where Are We Now?

Young Joon Yoon
1   Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York
,
Scott L. Friedman
1   Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York
,
Youngmin A. Lee
1   Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York
› Author Affiliations
Further Information

Publication History

Publication Date:
12 February 2016 (online)

Abstract

Fibrosis is the wound-healing response of tissues to injury. Extensive characterization of organ fibrosis mechanisms has identified common core pathways in renal, pulmonary, skin, and liver fibrosis that offer novel antifibrotic approaches across tissues, in addition to organ-specific and/or disease-specific pathways. A growing number of small molecules and biologics have been identified that are reaching clinical trials for one or more fibrotic diseases, making new antifibrotic options for liver fibrosis an emerging reality. The accelerating pace of drug development, which will also include drug repurposing or combination therapies, heightens the need for novel methods for noninvasive fibrosis assessment without liver biopsy, which is critical to establishing surrogate endpoints for patients in clinical trials who have a low risk of hepatic decompensation. In this article the authors review mechanisms of liver fibrosis and outline potential therapeutic targets and antifibrotic therapies in preclinical studies and clinical trials.

 
  • References

  • 1 Ahmed A, Wong RJ, Harrison SA. Nonalcoholic fatty liver disease review: diagnosis, treatment, and outcomes. Clin Gastroenterol Hepatol 2015; 13 (12) 2062-2070
  • 2 Cohen-Naftaly M, Friedman SL. Current status of novel antifibrotic therapies in patients with chronic liver disease. Therap Adv Gastroenterol 2011; 4 (6) 391-417
  • 3 Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008; 134 (6) 1655-1669
  • 4 Thompson AJ, Patel K. Antifibrotic therapies: will we ever get there?. Curr Gastroenterol Rep 2010; 12 (1) 23-29
  • 5 Schuppan D, Kim YO. Evolving therapies for liver fibrosis. J Clin Invest 2013; 123 (5) 1887-1901
  • 6 Schuppan D, Afdhal NH. Liver cirrhosis. Lancet 2008; 371 (9615) 838-851
  • 7 Lee YA, Wallace MC, Friedman SL. Pathobiology of liver fibrosis: a translational success story. Gut 2015; 64 (5) 830-841
  • 8 Ellis EL, Mann DA. Clinical evidence for the regression of liver fibrosis. J Hepatol 2012; 56 (5) 1171-1180
  • 9 Pérez-Tamayo R. Cirrhosis of the liver: a reversible disease?. Pathol Annu 1979; 14 (Pt 2) 183-213
  • 10 Marcellin P, Gane E, Buti M , et al. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet 2013; 381 (9865) 468-475
  • 11 Chang TT, Liaw YF, Wu SS , et al. Long-term entecavir therapy results in the reversal of fibrosis/cirrhosis and continued histological improvement in patients with chronic hepatitis B. Hepatology 2010; 52 (3) 886-893
  • 12 Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu Rev Pathol 2011; 6: 425-456
  • 13 Friedman SL, Sheppard D, Duffield JS, Violette S. Therapy for fibrotic diseases: nearing the starting line. Sci Transl Med 2013; 5 (167) 167sr1
  • 14 Luedde T, Kaplowitz N, Schwabe RF. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 2014; 147 (4) 765-783.e4
  • 15 Masubuchi Y, Suda C, Horie T. Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice. J Hepatol 2005; 42 (1) 110-116
  • 16 Jaeschke H. Inflammation in response to hepatocellular apoptosis. Hepatology 2002; 35 (4) 964-966
  • 17 Canbay A, Friedman S, Gores GJ. Apoptosis: the nexus of liver injury and fibrosis. Hepatology 2004; 39 (2) 273-278
  • 18 Muppidi JR, Tschopp J, Siegel RM. Life and death decisions: secondary complexes and lipid rafts in TNF receptor family signal transduction. Immunity 2004; 21 (4) 461-465
  • 19 Takehara T, Tatsumi T, Suzuki T , et al. Hepatocyte-specific disruption of Bcl-xL leads to continuous hepatocyte apoptosis and liver fibrotic responses. Gastroenterology 2004; 127 (4) 1189-1197
  • 20 Vick B, Weber A, Urbanik T , et al. Knockout of myeloid cell leukemia-1 induces liver damage and increases apoptosis susceptibility of murine hepatocytes. Hepatology 2009; 49 (2) 627-636
  • 21 Canbay A, Higuchi H, Bronk SF, Taniai M, Sebo TJ, Gores GJ. Fas enhances fibrogenesis in the bile duct ligated mouse: a link between apoptosis and fibrosis. Gastroenterology 2002; 123 (4) 1323-1330
  • 22 Canbay A, Feldstein A, Baskin-Bey E, Bronk SF, Gores GJ. The caspase inhibitor IDN-6556 attenuates hepatic injury and fibrosis in the bile duct ligated mouse. J Pharmacol Exp Ther 2004; 308 (3) 1191-1196
  • 23 Zhan SS, Jiang JX, Wu J , et al. Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo. Hepatology 2006; 43 (3) 435-443
  • 24 Barreyro FJ, Holod S, Finocchietto PV , et al. The pan-caspase inhibitor Emricasan (IDN-6556) decreases liver injury and fibrosis in a murine model of non-alcoholic steatohepatitis. Liver Int 2015; 35 (3) 953-966
  • 25 Puche JE, Saiman Y, Friedman SL. Hepatic stellate cells and liver fibrosis. Compr Physiol 2013; 3 (4) 1473-1492
  • 26 Jarnagin WR, Rockey DC, Koteliansky VE, Wang SS, Bissell DM. Expression of variant fibronectins in wound healing: cellular source and biological activity of the EIIIA segment in rat hepatic fibrogenesis. J Cell Biol 1994; 127 (6 Pt 2) 2037-2048
  • 27 Xie G, Wang X, Wang L , et al. Role of differentiation of liver sinusoidal endothelial cells in progression and regression of hepatic fibrosis in rats. Gastroenterology 2012; 142 (4) 918-927.e6
  • 28 Thabut D, Shah V. Intrahepatic angiogenesis and sinusoidal remodeling in chronic liver disease: new targets for the treatment of portal hypertension?. J Hepatol 2010; 53 (5) 976-980
  • 29 Tacke F. Functional role of intrahepatic monocyte subsets for the progression of liver inflammation and liver fibrosis in vivo. Fibrogenesis Tissue Repair 2012; 5 (Suppl. 01) S27
  • 30 Ingersoll MA, Spanbroek R, Lottaz C , et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 2010; 115 (3) e10-e19
  • 31 Tacke F, Randolph GJ. Migratory fate and differentiation of blood monocyte subsets. Immunobiology 2006; 211 (6–8) 609-618
  • 32 Tacke F, Alvarez D, Kaplan TJ , et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 2007; 117 (1) 185-194
  • 33 Seki E, De Minicis S, Gwak GY , et al. CCR1 and CCR5 promote hepatic fibrosis in mice. J Clin Invest 2009; 119 (7) 1858-1870
  • 34 Vanbervliet B, Homey B, Durand I , et al. Sequential involvement of CCR2 and CCR6 ligands for immature dendritic cell recruitment: possible role at inflamed epithelial surfaces. Eur J Immunol 2002; 32 (1) 231-242
  • 35 Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol 2014; 14 (3) 181-194
  • 36 Seki E, de Minicis S, Inokuchi S , et al. CCR2 promotes hepatic fibrosis in mice. Hepatology 2009; 50 (1) 185-197
  • 37 Miura K, Yang L, van Rooijen N, Ohnishi H, Seki E. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am J Physiol Gastrointest Liver Physiol 2012; 302 (11) G1310-G1321
  • 38 Trautwein C, Friedman SL, Schuppan D, Pinzani M. Hepatic fibrosis: concept to treatment. J Hepatol 2015; 62 (1, Suppl) S15-S24
  • 39 Karlmark KR, Zimmermann HW, Roderburg C , et al. The fractalkine receptor CX3CR1 protects against liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes. Hepatology 2010; 52 (5) 1769-1782
  • 40 Watanabe A, Sohail MA, Gomes DA , et al. Inflammasome-mediated regulation of hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2009; 296 (6) G1248-G1257
  • 41 Gao B, Radaeva S. Natural killer and natural killer T cells in liver fibrosis. Biochim Biophys Acta 2013; 1832 (7) 1061-1069
  • 42 Jiao J, Sastre D, Fiel MI , et al. Dendritic cell regulation of carbon tetrachloride-induced murine liver fibrosis regression. Hepatology 2012; 55 (1) 244-255
  • 43 Friedman SL. Liver fibrosis in 2012: convergent pathways that cause hepatic fibrosis in NASH. Nat Rev Gastroenterol Hepatol 2013; 10 (2) 71-72
  • 44 Pinzani M. PDGF and signal transduction in hepatic stellate cells. Front Biosci 2002; 7: d1720-d1726
  • 45 Borkham-Kamphorst E, van Roeyen CR, Ostendorf T, Floege J, Gressner AM, Weiskirchen R. Pro-fibrogenic potential of PDGF-D in liver fibrosis. J Hepatol 2007; 46 (6) 1064-1074
  • 46 Cong M, Iwaisako K, Jiang C, Kisseleva T. Cell signals influencing hepatic fibrosis. Int J Hepatol 2012; 2012: 158547
  • 47 Zhao Y, Wang Y, Wang Q, Liu Z, Liu Q, Deng X. Hepatic stellate cells produce vascular endothelial growth factor via phospho-p44/42 mitogen-activated protein kinase/cyclooxygenase-2 pathway. Mol Cell Biochem 2012; 359 (1–2) 217-223
  • 48 Yoshiji H, Kuriyama S, Yoshii J , et al. Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis. Gut 2003; 52 (9) 1347-1354
  • 49 Steiling H, Mühlbauer M, Bataille F, Schölmerich J, Werner S, Hellerbrand C. Activated hepatic stellate cells express keratinocyte growth factor in chronic liver disease. Am J Pathol 2004; 165 (4) 1233-1241
  • 50 Yu C, Wang F, Jin C , et al. Role of fibroblast growth factor type 1 and 2 in carbon tetrachloride-induced hepatic injury and fibrogenesis. Am J Pathol 2003; 163 (4) 1653-1662
  • 51 Yang C, Zeisberg M, Mosterman B , et al. Liver fibrosis: insights into migration of hepatic stellate cells in response to extracellular matrix and growth factors. Gastroenterology 2003; 124 (1) 147-159
  • 52 Marra F, Romanelli RG, Giannini C , et al. Monocyte chemotactic protein-1 as a chemoattractant for human hepatic stellate cells. Hepatology 1999; 29 (1) 140-148
  • 53 Huang G, Brigstock DR. Regulation of hepatic stellate cells by connective tissue growth factor. Front Biosci (Landmark Ed) 2012; 17: 2495-2507
  • 54 Corpechot C, Carrat F, Bonnand AM, Poupon RE, Poupon R. The effect of ursodeoxycholic acid therapy on liver fibrosis progression in primary biliary cirrhosis. Hepatology 2000; 32 (6) 1196-1199
  • 55 McHutchison J, Goodman Z, Patel K , et al. Farglitazar lacks antifibrotic activity in patients with chronic hepatitis C infection. Gastroenterology 2010; 138 (4) 1365-1373
  • 56 Sanyal AJ, Chalasani N, Kowdley KV , et al; NASH CRN. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 2010; 362 (18) 1675-1685
  • 57 Neuschwander-Tetri BA, Loomba R, Sanyal AJ , et al; NASH Clinical Research Network. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 2015; 385 (9972) 956-965
  • 58 Zein CO, Yerian LM, Gogate P , et al. Pentoxifylline improves nonalcoholic steatohepatitis: a randomized placebo-controlled trial. Hepatology 2011; 54 (5) 1610-1619
  • 59 Sohail MA, Hashmi AZ, Hakim W , et al. Adenosine induces loss of actin stress fibers and inhibits contraction in hepatic stellate cells via Rho inhibition. Hepatology 2009; 49 (1) 185-194
  • 60 Choi SS, Sicklick JK, Ma Q , et al. Sustained activation of Rac1 in hepatic stellate cells promotes liver injury and fibrosis in mice. Hepatology 2006; 44 (5) 1267-1277
  • 61 Mihos CG, Pineda AM, Santana O. Cardiovascular effects of statins, beyond lipid-lowering properties. Pharmacol Res 2014; 88: 12-19
  • 62 Marrone G, Maeso-Díaz R, García-Cardena G , et al. KLF2 exerts antifibrotic and vasoprotective effects in cirrhotic rat livers: behind the molecular mechanisms of statins. Gut 2015; 64 (9) 1434-1443
  • 63 Trebicka J, Hennenberg M, Odenthal M , et al. Atorvastatin attenuates hepatic fibrosis in rats after bile duct ligation via decreased turnover of hepatic stellate cells. J Hepatol 2010; 53 (4) 702-712
  • 64 Watts KL, Sampson EM, Schultz GS, Spiteri MA. Simvastatin inhibits growth factor expression and modulates profibrogenic markers in lung fibroblasts. Am J Respir Cell Mol Biol 2005; 32 (4) 290-300
  • 65 Reddy R, Chahoud G, Mehta JL. Modulation of cardiovascular remodeling with statins: fact or fiction?. Curr Vasc Pharmacol 2005; 3 (1) 69-79
  • 66 Simon TG, King LY, Zheng H, Chung RT. Statin use is associated with a reduced risk of fibrosis progression in chronic hepatitis C. J Hepatol 2015; 62 (1) 18-23
  • 67 Negro F. Are statins a remedy for all seasons?. J Hepatol 2015; 62 (1) 8-10
  • 68 Sertorio M, Hou X, Carmo RF , et al. IL-22 and IL-22 binding protein (IL-22BP) regulate fibrosis and cirrhosis in hepatitis C virus and schistosome infections. Hepatology 2015; 61 (4) 1321-1331
  • 69 Dudakov JA, Hanash AM, van den Brink MR. Interleukin-22: immunobiology and pathology. Annu Rev Immunol 2015; 33: 747-785
  • 70 Xia JL, Dai C, Michalopoulos GK, Liu Y. Hepatocyte growth factor attenuates liver fibrosis induced by bile duct ligation. Am J Pathol 2006; 168 (5) 1500-1512
  • 71 Ogawa S, Ochi T, Shimada H , et al. Anti-PDGF-B monoclonal antibody reduces liver fibrosis development. Hepatol Res 2010; 40 (11) 1128-1141
  • 72 Henderson NC, Arnold TD, Katamura Y , et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 2013; 19 (12) 1617-1624
  • 73 Olaso E, Labrador JP, Wang L , et al. Discoidin domain receptor 2 regulates fibroblast proliferation and migration through the extracellular matrix in association with transcriptional activation of matrix metalloproteinase-2. J Biol Chem 2002; 277 (5) 3606-3613
  • 74 Wells RG. The role of matrix stiffness in regulating cell behavior. Hepatology 2008; 47 (4) 1394-1400
  • 75 Inagaki Y, Okazaki I. Emerging insights into transforming growth factor beta SMAD signal in hepatic fibrogenesis. Gut 2007; 56 (2) 284-292
  • 76 Hanafusa H, Ninomiya-Tsuji J, Masuyama N , et al. Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression. J Biol Chem 1999; 274 (38) 27161-27167
  • 77 Engel ME, McDonnell MA, Law BK, Moses HL. Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription. J Biol Chem 1999; 274 (52) 37413-37420
  • 78 Guo J, Friedman SL. Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis. Fibrogenesis Tissue Repair 2010; 3: 21
  • 79 Weiskirchen R, Tacke F. Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology. Hepatobiliary Surg Nutr 2014; 3 (6) 344-363
  • 80 Paik YH, Schwabe RF, Bataller R, Russo MP, Jobin C, Brenner DA. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology 2003; 37 (5) 1043-1055
  • 81 Guo J, Loke J, Zheng F , et al. Functional linkage of cirrhosis-predictive single nucleotide polymorphisms of Toll-like receptor 4 to hepatic stellate cell responses. Hepatology 2009; 49 (3) 960-968
  • 82 Mehal WZ. The Gordian Knot of dysbiosis, obesity and NAFLD. Nat Rev Gastroenterol Hepatol 2013; 10 (11) 637-644
  • 83 Chassaing B, Koren O, Goodrich JK , et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 2015; 519 (7541) 92-96
  • 84 Luedde T, Schwabe RF. NF-κB in the liver—linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2011; 8 (2) 108-118
  • 85 Rippe RA, Schrum LW, Stefanovic B, Solís-Herruzo JA, Brenner DA. NF-kappaB inhibits expression of the alpha1(I) collagen gene. DNA Cell Biol 1999; 18 (10) 751-761
  • 86 Kluwe J, Pradere JP, Gwak GY , et al. Modulation of hepatic fibrosis by c-Jun-N-terminal kinase inhibition. Gastroenterology 2010; 138 (1) 347-359
  • 87 Yoshida K, Matsuzaki K, Mori S , et al. Transforming growth factor-beta and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury. Am J Pathol 2005; 166 (4) 1029-1039
  • 88 Bataller R, Schwabe RF, Choi YH , et al. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. J Clin Invest 2003; 112 (9) 1383-1394
  • 89 Jiang JX, Venugopal S, Serizawa N , et al. Reduced nicotinamide adenine dinucleotide phosphate oxidase 2 plays a key role in stellate cell activation and liver fibrogenesis in vivo. Gastroenterology 2010; 139 (4) 1375-1384
  • 90 Jiang JX, Chen X, Serizawa N , et al. Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831, a novel NOX4/NOX1 inhibitor in vivo. Free Radic Biol Med 2012; 53 (2) 289-296
  • 91 Bian EB, Zhao B, Huang C , et al. New advances of DNA methylation in liver fibrosis, with special emphasis on the crosstalk between microRNAs and DNA methylation machinery. Cell Signal 2013; 25 (9) 1837-1844
  • 92 Bian EB, Huang C, Ma TT , et al. DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats. Toxicol Appl Pharmacol 2012; 264 (1) 13-22
  • 93 Chen PJ, Huang C, Meng XM, Li J. Epigenetic modifications by histone deacetylases: Biological implications and therapeutic potential in liver fibrosis. Biochimie 2015; 116: 61-69
  • 94 Mannaerts I, Eysackers N, Onyema OO , et al. Class II HDAC inhibition hampers hepatic stellate cell activation by induction of microRNA-29. PLoS ONE 2013; 8 (1) e55786
  • 95 Szabo G, Bala S. MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol 2013; 10 (9) 542-552
  • 96 Montgomery RL, Yu G, Latimer PA , et al. MicroRNA mimicry blocks pulmonary fibrosis. EMBO Mol Med 2014; 6 (10) 1347-1356
  • 97 He Y, Wu YT, Huang C , et al. Inhibitory effects of long noncoding RNA MEG3 on hepatic stellate cells activation and liver fibrogenesis. Biochim Biophys Acta 2014; 1842 (11) 2204-2215
  • 98 Iredale JP. Hepatic stellate cell behavior during resolution of liver injury. Semin Liver Dis 2001; 21 (3) 427-436
  • 99 Iredale JP, Benyon RC, Pickering J , et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 1998; 102 (3) 538-549
  • 100 Oakley F, Meso M, Iredale JP , et al. Inhibition of inhibitor of kappaB kinases stimulates hepatic stellate cell apoptosis and accelerated recovery from rat liver fibrosis. Gastroenterology 2005; 128 (1) 108-120
  • 101 Krizhanovsky V, Yon M, Dickins RA , et al. Senescence of activated stellate cells limits liver fibrosis. Cell 2008; 134 (4) 657-667
  • 102 Miyahara T, Schrum L, Rippe R , et al. Peroxisome proliferator-activated receptors and hepatic stellate cell activation. J Biol Chem 2000; 275 (46) 35715-35722
  • 103 Hazra S, Xiong S, Wang J , et al. Peroxisome proliferator-activated receptor gamma induces a phenotypic switch from activated to quiescent hepatic stellate cells. J Biol Chem 2004; 279 (12) 11392-11401
  • 104 Yamaguchi Y, Takihara T, Chambers RA, Veraldi KL, Larregina AT, Feghali-Bostwick CA. A peptide derived from endostatin ameliorates organ fibrosis. Sci Transl Med 2012; 4 (136) 136ra71
  • 105 Chen J, Liu DG, Yang G , et al. Endostar, a novel human recombinant endostatin, attenuates liver fibrosis in CCl4-induced mice. Exp Biol Med (Maywood) 2014; 239 (8) 998-1006
  • 106 Bissell DM. Therapy for hepatic fibrosis: revisiting the preclinical models. Clin Res Hepatol Gastroenterol 2011; 35 (8–9) 521-525
  • 107 Delire B, Stärkel P, Leclercq I. Animal models for fibrotic liver diseases: what we have, what we need, and what is under development. J Clin Transl Hepatol 2015; 3 (1) 53-66
  • 108 Mederacke I, Hsu CC, Troeger JS , et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 2013; 4: 2823
  • 109 Sato Y, Murase K, Kato J , et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol 2008; 26 (4) 431-442
  • 110 Narmada BC, Kang Y, Venkatraman L , et al. Hepatic stellate cell-targeted delivery of hepatocyte growth factor transgene via bile duct infusion enhances its expression at fibrotic foci to regress dimethylnitrosamine-induced liver fibrosis. Hum Gene Ther 2013; 24 (5) 508-519
  • 111 Hannivoort RA, Hernandez-Gea V, Friedman SL. Genomics and proteomics in liver fibrosis and cirrhosis. Fibrogenesis Tissue Repair 2012; 5 (1) 1
  • 112 Grompe M, Strom S. Mice with human livers. Gastroenterology 2013; 145 (6) 1209-1214
  • 113 Olinga P, Schuppan D. Precision-cut liver slices: a tool to model the liver ex vivo. J Hepatol 2013; 58 (6) 1252-1253
  • 114 Zhou Q, Patel D, Kwa T , et al. Liver injury-on-a-chip: microfluidic co-cultures with integrated biosensors for monitoring liver cell signaling during injury. Lab Chip 2015; 15 (23) 4467-4478
  • 115 Torok NJ, Dranoff JA, Schuppan D, Friedman SL. Strategies and endpoints of antifibrotic drug trials: summary and recommendations from the AASLD Emerging Trends Conference, Chicago, June 2014. Hepatology 2015; 62 (2) 627-634
  • 116 Tsochatzis E, Bruno S, Isgro G , et al. Collagen proportionate area is superior to other histological methods for sub-classifying cirrhosis and determining prognosis. J Hepatol 2014; 60 (5) 948-954
  • 117 Banerjee R, Pavlides M, Tunnicliffe EM , et al. Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J Hepatol 2014; 60 (1) 69-77
  • 118 Fuchs BC, Wang H, Yang Y , et al. Molecular MRI of collagen to diagnose and stage liver fibrosis. J Hepatol 2013; 59 (5) 992-998
  • 119 Decaris ML, Emson CL, Li K , et al. Turnover rates of hepatic collagen and circulating collagen-associated proteins in humans with chronic liver disease. PLoS ONE 2015; 10 (4) e0123311
  • 120 Qin N, Yang F, Li A , et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 2014; 513 (7516) 59-64
  • 121 Morling JR, Fallowfield JA, Guha IN , et al; Edinburgh Type 2 Diabetes Study investigators. Using non-invasive biomarkers to identify hepatic fibrosis in people with type 2 diabetes mellitus: the Edinburgh type 2 diabetes study. J Hepatol 2014; 60 (2) 384-391
  • 122 Kwok R, Tse YK, Wong GL , et al. Systematic review with meta-analysis: non-invasive assessment of non-alcoholic fatty liver disease—the role of transient elastography and plasma cytokeratin-18 fragments. Aliment Pharmacol Ther 2014; 39 (3) 254-269
  • 123 Schuppan D. Liver fibrosis: common mechanisms and antifibrotic therapies. Clin Res Hepatol Gastroenterol 2015; 39 (Suppl. 01) S51-S59
  • 124 Ebrahimkhani MR, Oakley F, Murphy LB , et al. Stimulating healthy tissue regeneration by targeting the 5-HT2B receptor in chronic liver disease. Nat Med 2011; 17 (12) 1668-1673
  • 125 Arosio B, Santambrogio D, Gagliano N, Annoni G. Changes in expression of the albumin, fibronectin and type I procollagen genes in CCl4-induced liver fibrosis: effect of pyridoxol L,2-pyrrolidon-5 carboxylate. Pharmacol Toxicol 1993; 73 (6) 301-304
  • 126 Gutiérrez-Ruiz MC, Bucio L, Correa A , et al. Metadoxine prevents damage produced by ethanol and acetaldehyde in hepatocyte and hepatic stellate cells in culture. Pharmacol Res 2001; 44 (5) 431-436
  • 127 Shenoy KT, Balakumaran LK, Mathew P , et al. Metadoxine versus placebo for the treatment of non-alcoholic steatohepatitis: A randomized controlled trial. J Clin Exp Hepatol 2014; 4 (2) 94-100
  • 128 Traber PG, Chou H, Zomer E , et al. Regression of fibrosis and reversal of cirrhosis in rats by galectin inhibitors in thioacetamide-induced liver disease. PLoS ONE 2013; 8 (10) e75361
  • 129 Henderson NC, Mackinnon AC, Farnworth SL , et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci U S A 2006; 103 (13) 5060-5065
  • 130 Flores-Contreras L, Sandoval-Rodríguez AS, Mena-Enriquez MG , et al. Treatment with pirfenidone for two years decreases fibrosis, cytokine levels and enhances CB2 gene expression in patients with chronic hepatitis C. BMC Gastroenterol 2014; 14: 131
  • 131 Inomata M, Nishioka Y, Azuma A. Nintedanib: evidence for its therapeutic potential in idiopathic pulmonary fibrosis. Core Evid 2015; 10: 89-98
  • 132 Moon HJ, Finney J, Ronnebaum T, Mure M. Human lysyl oxidase-like 2. Bioorg Chem 2014; 57: 231-241
  • 133 Miller III ER, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med 2005; 142 (1) 37-46
  • 134 Lavine JE. Vitamin E treatment of nonalcoholic steatohepatitis in children: a pilot study. J Pediatr 2000; 136 (6) 734-738
  • 135 Mehal WZ, Iredale J, Friedman SL. Scraping fibrosis: expressway to the core of fibrosis. Nat Med 2011; 17 (5) 552-553