Synlett, Table of Contents Synlett 2018; 29(05): 663-667DOI: 10.1055/s-0036-1591520 letter © Georg Thieme Verlag Stuttgart · New YorkC(sp3)–H Peroxidation of 3-Substituted Indolin-2-ones under Metal-Free Conditions Wei-Wei Ying School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China Email: weiwenting@nbu.edu.cn , Wen-Ming Zhu School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China Email: weiwenting@nbu.edu.cn , Zhanghua Gao School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China Email: weiwenting@nbu.edu.cn , Hongze Liang School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China Email: weiwenting@nbu.edu.cn , Wen-Ting Wei* School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China Email: weiwenting@nbu.edu.cn› Author AffiliationsRecommend Article Abstract Buy Article All articles of this category ◊ These authors contributed equally to this work Abstract A C(sp3)–H peroxidation of 3-substituted indolin-2-ones through radical coupling reaction has been developed under metal-free conditions. Using tert-butyl hydroperoxide both as an oxidant and as a peroxidation reagent to couple with the C(sp3)–H bonds of 3-substituted indolin-2-ones can form a new C–O bond without using any additives. This simple strategy provides a green and efficient approach to 3-peroxyindolin-2-ones in moderate to excellent yields. The resulting 3-peroxyindolin-2-ones could be further transformed into 3-hydroxyindolin-2-ones. Key words Key wordsC(sp3)–H peroxidation - metal-free - 3-substituted indolin-2-ones - tert-butyl hydroperoxide Full Text References References and Notes 1a Godula K. Sames D. Science 2006; 312: 67 1b Baran PS. Ishihara Y. Synlett 2010; 1733 1c Newhouse T. Baran PS. Angew. Chem. Int. Ed. 2011; 50: 3362 1d Davies HM. L. Bois JD. Yu J.-Q. Chem. Soc. Rev. 2011; 40: 1855 1e Wenzel MN. Owens PK. Bray JT. W. Lynam JM. Aguiar PM. Reed C. Lee JD. Hamilton JF. Whitwood AC. Fairlamb IJ. S. J. Am. Chem. Soc. 2017; 139: 1177 1f Guo S.-R. Kumar PS. Yang M.-H. Adv. Synth. Catal. 2017; 1: 2 2a Baudoin O. Acc. Chem. Res. 2017; 50: 1114 2b Yang D. J. Am. Chem. Soc. 2015; 137: 1130 2c Kim JH. Greßies S. Mélissa B.-A. Daniliuc C. Glorius F. ACS Catal. 2016; 6: 7652 2d Zhu Q.-H. Ji D.-Z. Liang T.-T. Wang X.-Y. Xu Y.-G. Org. Lett. 2015; 17: 3798 3a Fan R. Li W. Pu D. Zhang L. Org. Lett. 2009; 11: 1425 3b Ochiai M. Miyamoto K. Kaneaki T. Hayashi S. Nakanishi W. Science 2011; 332: 448 3c Kantak AA. Potavathri S. Barham RA. Romano KM. DeBoef B. J. Am. Chem. Soc. 2011; 133: 19960 3d Shirakawa E. Hayashi T. Chem. Lett. 2012; 41: 130 3e Hari DP. Schroll P. König B. J. Am. Chem. Soc. 2012; 134: 2958 3f Souto JA. Zian D. Muñiz K. J. Am. Chem. Soc. 2012; 134: 7242 3g Luo W.-K. Shi X. Zhou W. Yang L. Org. Lett. 2016; 18: 2036 3h Chaudhari MB. Sutar Y. Malpathak S. Hazra A. Gnanaprakasam B. Org. Lett. 2017; 19: 3628 4a Sun C.-L. Li H. Yu D.-G. Yu M. Zhou X. Lu X.-Y. Huang K. Zheng S.-F. Li B.-J. Shi Z.-J. Nat. Chem. 2010; 2: 1044 4b Shirakawa E. Itoh K. Higashino T. Hayashi T. J. Am. Chem. Soc. 2010; 132: 15537 4c Liu W. Cao H. Zhang H. Zhang H. Chung KH. He C. Wang H. Kwong FY. Lei A. J. Am. Chem. Soc. 2010; 132: 16737 5a Jefford CW. Curr. Top. Med. Chem. 2012; 12: 373 5b Yadav N. Sharma C. Awasthi SK. RSC Adv. 2014; 4: 5469 5c Hao HD. Wittlin S. Wu Y. Chem. Eur. J. 2013; 19: 7605 6 Ingram K. Yaremenko IA. Krylov IB. Hofer L. Terent’ev AO. Keiser J. J. Med. Chem. 2012; 55: 8700 7a Kumar N. Sharma M. Rawat DS. Curr. Med. Chem. 2011; 18: 3889 7b Terzić N. Opsenica D. Milić D. Tinant B. Smith KS. Milhous WK. Šolaja BA. J. Med. Chem. 2007; 50: 5118 8a Yang W.-C. Weng S.-S. Ramasamy A. Rajeshwaren G. Liao Y.-Y. Chen C.-T. Org. Biomol. Chem. 2015; 13: 2385 8b Jiang J.-W. Liu J.-J. Yang L. Shao Y. Cheng J. Bao X.-G. Wan X.-B. Chem. Commun. 2015; 51: 14728 8c Banerjee A. Santra SK. Khatun N. Ali W. Patel BK. Chem. Commun. 2015; 51: 15422 8d Liu W.-P. Li Y.-M. Liu K.-S. Li Z.-P. J. Am. Chem. Soc. 2011; 133: 10756 8e Cheng J.-K. Loh T.-P. J. Am. Chem. Soc. 2015; 137: 42 8f Bertrand S.-C. Demaerel J. Engler H. Klussmann M. Angew. Chem. Int. Ed. 2014; 53: 8737 9 Iwata S. Hata T. Urabe H. Adv. Synth. Catal. 2012; 354: 3480 10 Klare HF. T. Goldberg AF. G. Duquette DC. Stoltz BM. Org. Lett. 2017; 19: 988 11a Wei W.-T. Zhu W.-M. Ying W.-W. Wu Y. Huang Y.-L. Liang HZ. Org. Biomol. Chem. 2017; 15: 5254 11b Wei W.-T. Zhu W.-M. Ying W.-W. Wang Y.-N. Bao W.-H. Gao L.-H. Luo Y.-J. Liang HZ. Adv. Synth. Catal. 2017; 359: in press ; DOI: 10.1002/adsc.201700870 12 General Procedure To a Schlenk tube were added 3-substituted indolin-2-ones 1 (0.3 mmol), t-BuOOH (2a, 70% in water, 0.72 mmol), and DCE (2 mL). Then the tube was stirred at 85 °C under air for the indicated time until complete consumption of starting material as monitored by TLC analysis. After the reaction was complete, the solution was concentrated under reduced pressure, and the mixture was purified by flash column chromatography over silica gel (hexane/ethyl acetate) to afford the desired products 3. The products were analyzed by 1H NMR and 13C NMR spectroscopy, and mass spectrometry (see Supporting Information). Typical Data for Representative Compound: 3-(tert-Butylperoxy)-3-phenylindolin-2-one (3a) White solid (0.0811 g, 91% yield). 1H NMR (400 MHz, CDCl3): δ = 8.62 (s, 1 H), 7.45–7.43 (m, 2 H), 7.34–7.25 (m, 5 H), 7.08 (t, J = 8.0 Hz, 1 H), 6.90 (d, J = 7.6 Hz, 1 H), 1.19 (s, 9 H). 13C NMR (100 MHz, CDCl3): δ= 176.3, 141.7, 136.0, 129.8, 129.0, 128.9, 128.5, 127.0, 126.5, 122.6, 110.2, 86.5, 80.9, 26.6. IR (KBr): 1678, 1113, 864 cm–1. ESI-HRMS: m/z calcd for C18H20NO3 [M + H]+: 298.1438; found: 298.1434. 13a Cheng J.-K. Loh T.-P. J. Am. Chem. Soc. 2015; 137: 42 13b Dai P. Dussault PH. Trullinger TK. J. Org. Chem. 2004; 69: 2851 14 Ratnikov MO. Farkas LE. McLaughlin EC. Chiou G. Choi H. El-Khalafy SH. Doyle MP. J. Org. Chem. 2011; 76: 2585 15a Zhang X. Wang L. Green Chem. 2012; 14: 2141 15b Zhang X. Wang M. Zhang Y. Wang L. RSC Adv. 2013; 3: 1311 15c Zi Y. Cai Z. Wang S. Ji S. Org. Lett. 2014; 16: 3094 15d Du B. Jin B. Sun P. Org. Biomol. Chem. 2014; 12: 4586 15e Zhang H. Dong D. Hao S. Wang Z. RSC Adv. 2016; 6: 8465 16a Shu Z. Ye Y. Deng Y. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2013; 52: 10573 16b Hashemi H. Saberi D. Poorsadeghic S. Niknam K. RSC Adv. 2017; 7: 7619 17a Wei W.-T. Yang X.-H. Li H.-B. Li J.-H. Adv. Synth. Catal. 2015; 357: 59 17b Chen X.-L. Li Y. Wu M.-H. Guo H.-B. Jiang L.-Q. Wang J. Sun S.-F. RSC Adv. 2016; 6: 102023 Supplementary Material Supplementary Material Supporting Information