Semin Respir Crit Care Med 2017; 38(03): 253-263
DOI: 10.1055/s-0037-1599224
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Ventilator-Associated Pneumonia: The Role of Emerging Diagnostic Technologies

Marin H. Kollef
1   Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri
Carey-Ann D. Burnham
2   Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
› Author Affiliations
Further Information

Publication History

Publication Date:
04 June 2017 (online)


Antibiotic resistance has emerged as a key determinant of outcome in patients with serious infections along with the virulence of the underlying pathogen. Within the intensive care unit (ICU) setting, ventilator-associated pneumonia (VAP) is a common nosocomial infection that is frequently caused by multidrug-resistant bacteria. Antimicrobial resistance is a growing challenge in the care of critically ill patients. Escalating rates of antibiotic resistance add substantially to the morbidity, mortality, and cost related to infection in the ICU. Both gram-positive organisms, such as methicillin-resistant Staphylococcus aureus and vancomycin-intermediate S. aureus, and gram-negative bacteria, including Pseudomonas aeruginosa, Acinetobacter species, carbapenem-resistant Enterobacteriaceae, such as the Klebsiella pneumoniae carbapenemase–producing bacteria, and extended spectrum β-lactamase organisms, have contributed to the escalating rates of resistance seen in VAP and other nosocomial infections. The rising rates of antimicrobial resistance have led to the routine empiric administration of broad-spectrum antibiotics even when bacterial infection is not documented. Moreover, there are several new broader-spectrum antibiotics that have recently become available and others scheduled for approval in the near future. The challenge to ICU clinicians is how to most effectively utilize these agents to maximize patient benefits while minimizing further emergence of resistance. Use of rapid diagnostics may hold the key for achieving this important balance. There is an urgent need for integrating the administration of new and existing antibiotics with the emerging rapid diagnostic technologies in a way that is both cost-effective and sustainable for the long run.

  • References

  • 1 Chastre J, Fagon J-Y. Ventilator-associated pneumonia. Am J Respir Crit Care Med 2002; 165 (07) 867-903
  • 2 Kollef MH, Hamilton CW, Ernst FR. Economic impact of ventilator-associated pneumonia in a large matched cohort. Infect Control Hosp Epidemiol 2012; 33 (03) 250-256
  • 3 Kollef KE, Schramm GE, Wills AR, Reichley RM, Micek ST, Kollef MH. Predictors of 30-day mortality and hospital costs in patients with ventilator-associated pneumonia attributed to potentially antibiotic-resistant gram-negative bacteria. Chest 2008; 134 (02) 281-287
  • 4 Guillamet CV, Kollef MH. Update on ventilator-associated pneumonia. Curr Opin Crit Care 2015; 21 (05) 430-438
  • 5 Skrupky LP, McConnell K, Dallas J, Kollef MH. A comparison of ventilator-associated pneumonia rates as identified according to the National Healthcare Safety Network and American College of Chest Physicians criteria. Crit Care Med 2012; 40 (01) 281-284
  • 6 Magill SS, Klompas M, Balk R. , et al. Developing a new, national approach to surveillance for ventilator-associated events. Crit Care Med 2013; 41 (11) 2467-2475
  • 7 Kollef MH, Chastre J, Fagon JY. , et al. Global prospective epidemiologic and surveillance study of ventilator-associated pneumonia due to Pseudomonas aeruginosa . Crit Care Med 2014; 42 (10) 2178-2187
  • 8 Micek ST, Wunderink RG, Kollef MH. , et al. An international multicenter retrospective study of Pseudomonas aeruginosa nosocomial pneumonia: impact of multidrug resistance. Crit Care 2015; 19: 219
  • 9 Chung DR, Song J-H, Kim SH. , et al; Asian Network for Surveillance of Resistant Pathogens Study Group. High prevalence of multidrug-resistant nonfermenters in hospital-acquired pneumonia in Asia. Am J Respir Crit Care Med 2011; 184 (12) 1409-1417
  • 10 Martin-Loeches I, Torres A, Rinaudo M. , et al. Resistance patterns and outcomes in intensive care unit (ICU)-acquired pneumonia. Validation of European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC) classification of multidrug resistant organisms. J Infect 2015; 70 (03) 213-222
  • 11 Nseir S, Martin-Loeches I, Makris D. , et al. Impact of appropriate antimicrobial treatment on transition from ventilator-associated tracheobronchitis to ventilator-associated pneumonia. Crit Care 2014; 18 (03) R129
  • 12 Jones RN. Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin Infect Dis 2010; 51 (Suppl. 01) S81-S87
  • 13 Sandiumenge A, Lisboa T, Gomez F, Hernandez P, Canadell L, Rello J. Effect of antibiotic diversity on ventilator-associated pneumonia caused by ESKAPE Organisms. Chest 2011; 140 (03) 643-651
  • 14 Qureshi S, Agrawal C, Madan M, Pandey A, Chauhan H. Superbugs causing ventilator associated pneumonia in a tertiary care hospital and the return of pre-antibiotic era!. Indian J Med Microbiol 2015; 33 (02) 286-289
  • 15 Garnacho-Montero J, Corcia-Palomo Y, Amaya-Villar R, Martin-Villen L. How to treat VAP due to MDR pathogens in ICU patients. BMC Infect Dis 2014; 14: 135
  • 16 Fihman V, Messika J, Hajage D. , et al. Five-year trends for ventilator-associated pneumonia: correlation between microbiological findings and antimicrobial drug consumption. Int J Antimicrob Agents 2015; 46 (05) 518-525
  • 17 Dennesen PJ, van der Ven AJ, Kessels AG, Ramsay G, Bonten MJ. Resolution of infectious parameters after antimicrobial therapy in patients with ventilator-associated pneumonia. Am J Respir Crit Care Med 2001; 163 (06) 1371-1375
  • 18 Liu YY, Wang Y, Walsh TR. , et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016; 16 (02) 161-168
  • 19 van Duin D, Doi Y. Outbreak of colistin-resistant, carbapenemase-producing Klebsiella pneumoniae: are we at the end of the road?. J Clin Microbiol 2015; 53 (10) 3116-3117
  • 20 Klompas M, Kulldorff M, Platt R. Risk of misleading ventilator-associated pneumonia rates with use of standard clinical and microbiological criteria. Clin Infect Dis 2008; 46 (09) 1443-1446
  • 21 Ego A, Preiser JC, Vincent JL. Impact of diagnostic criteria on the incidence of ventilator-associated pneumonia. Chest 2015; 147 (02) 347-355
  • 22 American Thoracic Society; Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 2005; 171 (04) 388-416
  • 23 Charles MV, Easow JM, Joseph NM, Ravishankar M, Kumar S, Umadevi S. Role of appropriate therapy in combating mortality among the ventilated patients. J Clin Diagn Res 2014; 8 (08) DC01-DC03
  • 24 Luna CM, Aruj P, Niederman MS. , et al; Grupo Argentino de Estudio de la Neumonía Asociada al Respirador group. Appropriateness and delay to initiate therapy in ventilator-associated pneumonia. Eur Respir J 2006; 27 (01) 158-164
  • 25 Fàbregas N, Ewig S, Torres A. , et al. Clinical diagnosis of ventilator associated pneumonia revisited: comparative validation using immediate post-mortem lung biopsies. Thorax 1999; 54 (10) 867-873
  • 26 Kirtland SH, Corley DE, Winterbauer RH. , et al. The diagnosis of ventilator-associated pneumonia: a comparison of histologic, microbiologic, and clinical criteria. Chest 1997; 112 (02) 445-457
  • 27 Rumbak MJ, Bass RL. Tracheal aspirate correlates with protected specimen brush in long-term ventilated patients who have clinical pneumonia. Chest 1994; 106 (02) 531-534
  • 28 Blot F, Raynard B, Chachaty E, Tancrède C, Antoun S, Nitenberg G. Value of gram stain examination of lower respiratory tract secretions for early diagnosis of nosocomial pneumonia. Am J Respir Crit Care Med 2000; 162 (05) 1731-1737
  • 29 Scholte JB, van Dessel HA, Linssen CF. , et al. Endotracheal aspirate and bronchoalveolar lavage fluid analysis: interchangeable diagnostic modalities in suspected ventilator-associated pneumonia?. J Clin Microbiol 2014; 52 (10) 3597-3604
  • 30 Pugin J, Auckenthaler R, Mili N, Janssens JP, Lew PD, Suter PM. Diagnosis of ventilator-associated pneumonia by bacteriologic analysis of bronchoscopic and nonbronchoscopic “blind” bronchoalveolar lavage fluid. Am Rev Respir Dis 1991; 143 (5 Pt 1): 1121-1129
  • 31 Kollef MH, Bock KR, Richards RD, Hearns ML. The safety and diagnostic accuracy of minibronchoalveolar lavage in patients with suspected ventilator-associated pneumonia. Ann Intern Med 1995; 122 (10) 743-748
  • 32 Papazian L, Thomas P, Garbe L. , et al. Bronchoscopic or blind sampling techniques for the diagnosis of ventilator-associated pneumonia. Am J Respir Crit Care Med 1995; 152 (6, Pt 1): 1982-1991
  • 33 Bello G, Pennisi MA, Di Muzio F. , et al. Clinical impact of pulmonary sampling site in the diagnosis of ventilator-associated pneumonia: a prospective study using bronchoscopic bronchoalveolar lavage. J Crit Care 2016; 33: 151-157
  • 34 Fagon JY, Chastre J, Wolff M. , et al. Invasive and noninvasive strategies for management of suspected ventilator-associated pneumonia. A randomized trial. Ann Intern Med 2000; 132 (08) 621-630
  • 35 Sanchez-Nieto JM, Torres A, Garcia-Cordoba F. , et al. Impact of invasive and noninvasive quantitative culture sampling on outcome of ventilator-associated pneumonia: a pilot study. Am J Respir Crit Care Med 1998; 157 (02) 371-376
  • 36 Rello J, Vidaur L, Sandiumenge A. , et al. De-escalation therapy in ventilator-associated pneumonia. Crit Care Med 2004; 32 (11) 2183-2190
  • 37 Souweine B, Veber B, Bedos JP. , et al. Diagnostic accuracy of protected specimen brush and bronchoalveolar lavage in nosocomial pneumonia: impact of previous antimicrobial treatments. Crit Care Med 1998; 26 (02) 236-244
  • 38 Canadian Critical Care Trials Group. A randomized trial of diagnostic techniques for ventilator-associated pneumonia. N Engl J Med 2006; 355 (25) 2619-2630
  • 39 Berton DC, Kalil AC, Teixeira PJ. Quantitative versus qualitative cultures of respiratory secretions for clinical outcomes in patients with ventilator-associated pneumonia. Cochrane Database Syst Rev 2014; 10 (10) CD006482
  • 40 Alvarez-Lerma F. ; ICU-Acquired Pneumonia Study Group. Modification of empiric antibiotic treatment in patients with pneumonia acquired in the intensive care unit. Intensive Care Med 1996; 22 (05) 387-394
  • 41 Iregui M, Ward S, Sherman G, Fraser VJ, Kollef MH. Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest 2002; 122 (01) 262-268
  • 42 Kollef MH, Sherman G, Ward S, Fraser VJ. Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest 1999; 115 (02) 462-474
  • 43 Andersson ME, Olofsson S, Lindh M. Comparison of the FilmArray assay and in-house real-time PCR for detection of respiratory infection. Scand J Infect Dis 2014; 46 (12) 897-901
  • 44 Crotty MP, Meyers S, Hampton N. , et al. Impact of antibacterials on subsequent resistance and clinical outcomes in adult patients with viral pneumonia: an opportunity for stewardship. Crit Care 2015; 19: 404
  • 45 Crotty MP, Meyers S, Hampton N. , et al. Epidemiology, co-infections, and outcomes of viral pneumonia in adults: an observational cohort study. Medicine (Baltimore) 2015; 94 (50) e2332
  • 46 Azadeh N, Sakata KK, Brighton AM, Vikram HR, Grys TE. FilmArray Respiratory Panel Assay: comparison of nasopharyngeal swabs and bronchoalveolar lavage samples. J Clin Microbiol 2015; 53 (12) 3784-3787
  • 47 Micek ST, Chew B, Hampton N, Kollef MH. A case-control study assessing the impact of nonventilated hospital-acquired pneumonia on patient outcomes. Chest 2016; 150 (05) 1008-1014
  • 48 Chen JH, Lam HY, Yip CC. , et al. Clinical evaluation of the new high-throughput Luminex NxTAG Respiratory Pathogen Panel assay for multiplex respiratory pathogen detection. J Clin Microbiol 2016; 54 (07) 1820-1825
  • 49 Rogers BB, Shankar P, Jerris RC. , et al. Impact of a rapid respiratory panel test on patient outcomes. Arch Pathol Lab Med 2015; 139 (05) 636-641
  • 50 Subramony A, Zachariah P, Krones A, Whittier S, Saiman L. Impact of multiplex polymerase chain reaction testing for respiratory pathogens on healthcare resource utilization for pediatric inpatients. J Pediatr 2016; 173: 196-201.e2
  • 51 Oboho IK, Tomczyk SM, Al-Asmari AM. , et al. 2014 MERS-CoV outbreak in Jeddah--a link to health care facilities. N Engl J Med 2015; 372 (09) 846-854
  • 52 Cercenado E, Marín M, Burillo A, Martín-Rabadán P, Rivera M, Bouza E. Rapid detection of Staphylococcus aureus in lower respiratory tract secretions from patients with suspected ventilator-associated pneumonia: evaluation of the Cepheid Xpert MRSA/SA SSTI assay. J Clin Microbiol 2012; 50 (12) 4095-4097
  • 53 Leone M, Malavieille F, Papazian L. , et al; AzuRea Network. Routine use of Staphylococcus aureus rapid diagnostic test in patients with suspected ventilator-associated pneumonia. Crit Care 2013; 17 (04) R170
  • 54 Kunze N, Moerer O, Steinmetz N, Schulze MH, Quintel M, Perl T. Point-of-care multiplex PCR promises short turnaround times for microbial testing in hospital-acquired pneumonia--an observational pilot study in critical ill patients. Ann Clin Microbiol Antimicrob 2015; 14: 33
  • 55 Vincent JL, Brealey D, Libert N. , et al; Rapid Diagnosis of Infections in the Critically Ill Team. Rapid diagnosis of infection in the critically ill, a multicenter study of molecular detection in bloodstream infections, pneumonia, and sterile site infections. Crit Care Med 2015; 43 (11) 2283-2291
  • 56 Banerjee R, Teng CB, Cunningham SA. , et al. Randomized trial of rapid multiplex polymerase chain reaction-based blood culture identification and susceptibility testing. Clin Infect Dis 2015; 61 (07) 1071-1080
  • 57 Walker T, Dumadag S, Lee CJ. , et al. Clinical impact of laboratory implementation of verigene BC-GN microarray-based assay for detection of gram-negative bacteria in positive blood cultures. J Clin Microbiol 2016; 54 (07) 1789-1796
  • 58 Dodémont M, De Mendonça R, Nonhoff C, Roisin S, Denis O. Evaluation of Verigene Gram-Positive Blood Culture Assay performance for bacteremic patients. Eur J Clin Microbial Infect Dis 2015; 34: 473-477
  • 59 Beal SG, Ciurca J, Smith G. , et al. Evaluation of the nanosphere verigene gram-positive blood culture assay with the VersaTREK blood culture system and assessment of possible impact on selected patients. J Clin Microbiol 2013; 51 (12) 3988-3992
  • 60 Alby K, Daniels LM, Weber DJ, Miller MB. Development of a treatment algorithm for streptococci and enterococci from positive blood cultures identified with the Verigene Gram-positive blood culture assay. J Clin Microbiol 2013; 51 (11) 3869-3871
  • 61 McMullen AR, Wallace MA, Pincus DH, Wilkey K, Burnham CA. Evaluation of the Vitek MS Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry System for identification of clinically relevant filamentous fungi. J Clin Microbiol 2016; 54 (08) 2068-2073
  • 62 Gonzalez MD, Weber CJ, Burnham CA. Rapid identification of microorganisms from positive blood cultures by testing early growth on solid media using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Diagn Microbiol Infect Dis 2016; 85 (02) 133-135
  • 63 Wilen CB, McMullen AR, Burnham CA. Comparison of sample preparation methods, instrumentation platforms, and contemporary commercial databases for identification of clinically relevant mycobacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2015; 53 (07) 2308-2315
  • 64 McElvania TeKippe E, Burnham CA. Evaluation of the Bruker Biotyper and VITEK MS MALDI-TOF MS systems for the identification of unusual and/or difficult-to-identify microorganisms isolated from clinical specimens. Eur J Clin Microbiol Infect Dis 2014; 33 (12) 2163-2171
  • 65 Pence MA, McElvania TeKippe E, Wallace MA, Burnham CA. Comparison and optimization of two MALDI-TOF MS platforms for the identification of medically relevant yeast species. Eur J Clin Microbiol Infect Dis 2014; 33 (10) 1703-1712
  • 66 Branda JA, Rychert J, Burnham CA. , et al. Multicenter validation of the VITEK MS v2.0 MALDI-TOF mass spectrometry system for the identification of fastidious gram-negative bacteria. Diagn Microbiol Infect Dis 2014; 78 (02) 129-131
  • 67 Demarco ML, Burnham CA. Diafiltration MALDI-TOF mass spectrometry method for culture-independent detection and identification of pathogens directly from urine specimens. Am J Clin Pathol 2014; 141 (02) 204-212
  • 68 Verroken A, Defourny L, le Polain de Waroux O. , et al. Clinical impact of MALDI-TOF MS identification and rapid susceptibility testing on adequate antimicrobial treatment in sepsis with positive blood cultures. PLoS One 2016; 11 (05) e0156299
  • 69 Perez KK, Olsen RJ, Musick WL. , et al. Integrating rapid pathogen identification and antimicrobial stewardship significantly decreases hospital costs. Arch Pathol Lab Med 2013; 137 (09) 1247-1254
  • 70 Mather CA, Werth BJ, Sivagnanam S, SenGupta DJ, Butler-Wu SM. Rapid detection of vancomycin-intermediate Staphylococcus aureus by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2016; 54 (04) 883-890
  • 71 Youn JH, Drake SK, Weingarten RA, Frank KM, Dekker JP, Lau AF. Clinical performance of a matrix-assisted laser desorption ionization-time of flight mass spectrometry method for detection of certain blaKPC-containing plasmids. J Clin Microbiol 2016; 54 (01) 35-42
  • 72 Kannaiah S, Amster-Choder O. Methods for studying RNA localization in bacteria. Methods 2016; 98: 99-103
  • 73 Poppert S, Essig A, Stoehr B. , et al. Rapid diagnosis of bacterial meningitis by real-time PCR and fluorescence in situ hybridization. J Clin Microbiol 2005; 43 (07) 3390-3397
  • 74 Koncan R, Parisato M, Sakarikou C. , et al. Direct identification of major Gram-negative pathogens in respiratory specimens by respiFISH® HAP Gram (-) Panel, a beacon-based FISH methodology. Eur J Clin Microbiol Infect Dis 2015; 34 (10) 2097-2102
  • 75 Douglas IS, Price CS, Overdier KH. , et al. Rapid automated microscopy for microbiological surveillance of ventilator-associated pneumonia. Am J Respir Crit Care Med 2015; 191 (05) 566-573
  • 76 Burnham CA, Frobel RA, Herrera ML, Wickes BL. Rapid ertapenem susceptibility testing and Klebsiella pneumoniae carbapenemase phenotype detection in Klebsiella pneumoniae isolates by use of automated microscopy of immobilized live bacterial cells. J Clin Microbiol 2014; 52 (03) 982-986
  • 77 May AK, Brady JS, Romano-Keeler J. , et al. A pilot study of the noninvasive assessment of the lung microbiota as a potential tool for the early diagnosis of ventilator-associated pneumonia. Chest 2015; 147 (06) 1494-1502
  • 78 Dutta R, Hines EL, Gardner JW, Boilot P. Bacteria classification using Cyranose 320 electronic nose. Biomed Eng Online 2002; 1: 4
  • 79 van der Schee MP, Paff T, Brinkman P, van Aalderen WM, Haarman EG, Sterk PJ. Breathomics in lung disease. Chest 2015; 147 (01) 224-231
  • 80 Hanson III CW, Thaler ER. Electronic nose prediction of a clinical pneumonia score: biosensors and microbes. Anesthesiology 2005; 102 (01) 63-68
  • 81 Bos LD, Martin-Loeches I, Kastelijn JB. , et al. The volatile metabolic fingerprint of ventilator-associated pneumonia. Intensive Care Med 2014; 40 (05) 761-762
  • 82 Schnabel R, Fijten R, Smolinska A. , et al. Analysis of volatile organic compounds in exhaled breath to diagnose ventilator-associated pneumonia. Sci Rep 2015; 5: 17179
  • 83 Filipiak W, Beer R, Sponring A. , et al. Breath analysis for in vivo detection of pathogens related to ventilator-associated pneumonia in intensive care patients: a prospective pilot study. J Breath Res 2015; 9 (01) 016004
  • 84 Huang AM, Newton D, Kunapuli A. , et al. Impact of rapid organism identification via matrix-assisted laser desorption/ionization time-of-flight combined with antimicrobial stewardship team intervention in adult patients with bacteremia and candidemia. Clin Infect Dis 2013; 57 (09) 1237-1245
  • 85 Parta M, Goebel M, Thomas J, Matloobi M, Stager C, Musher DM. Impact of an assay that enables rapid determination of Staphylococcus species and their drug susceptibility on the treatment of patients with positive blood culture results. Infect Control Hosp Epidemiol 2010; 31 (10) 1043-1048
  • 86 Spellberg B, Srinivasan A, Chambers HF. New societal approaches to empowering antibiotic stewardship. JAMA 2016; 315 (12) 1229-1230
  • 87 Kollef MH, Micek ST. Rational use of antibiotics in the ICU: balancing stewardship and clinical outcomes. JAMA 2014; 312 (14) 1403-1404
  • 88 Kollef MH, Bassetti M, Burnham J, Dimopoulos G, Garnacho-Montero J, Lipman J, Luyt CE, Nicolau DP, Postma MJ, Torres A, Welte TG, Wunderink R. Intensive Care Med 2017; DOI: 10.1007/s00134-017-4682-7.