Semin Liver Dis 2017; 37(02): 119-127
DOI: 10.1055/s-0037-1601350
The Immune-Inflammation Connection
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA

Inflammasomes in Liver Fibrosis

Fernando Alegre
1   Department of Pediatric Gastroenterology, University of California San Diego (UCSD), and Rady Children's Hospital, San Diego, California
2   Department of Pharmacology, University of Valencia and FISABIO-University Hospital Dr. Peset, School of Medicine, Valencia, Spain
,
Pablo Pelegrin
3   Director, Biomedical Research Institute of Murcia (IMIB-Arrixaca), CIBERehd, Clinical University Hospital Virgen de la Arrixaca, Murcia, Spain
,
Ariel E. Feldstein
1   Department of Pediatric Gastroenterology, University of California San Diego (UCSD), and Rady Children's Hospital, San Diego, California
› Author Affiliations
Further Information

Publication History

Publication Date:
31 May 2017 (online)

Abstract

Cell death and inflammation are two central elements in the development of liver fibrosis. Inflammasomes are intracellular multiprotein complexes expressed in both hepatocytes and nonparenchymal cells in the liver that are key regulators of inflammation and cell fate. They respond to cellular danger signals by activating caspase 1, releasing the proinflammatory cytokines IL-1β and IL-18, as well as initiating a novel pathway of programmed cell death termed “pyroptosis.” These processes can initiate and perpetuate an abnormal wound-healing response with the principle cellular target being the activation of hepatic stellate cells. From the various inflammasomes, the NLRP3 inflammasome has been increasingly implicated in the pathogenesis of chronic inflammatory liver diseases, including nonalcoholic steatohepatitis, a disease process that is soaring and has evolved as a primary cause of liver fibrosis and need for liver transplantation. In this review, the authors highlight the growing evidence for both indirect and direct effects of inflammasomes in triggering liver fibrosis as well as potential novel targets for antifibrotic therapies.

 
  • References

  • 1 Byass P. The global burden of liver disease: a challenge for methods and for public health. BMC Med 2014; 12: 159
  • 2 Schuppan D, Kim YO. Evolving therapies for liver fibrosis. J Clin Invest 2013; 123 (05) 1887-1901
  • 3 Charlton MR, Burns JM, Pedersen RA, Watt KD, Heimbach JK, Dierkhising RA. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology 2011; 141 (04) 1249-1253
  • 4 Darwish Murad S, Metselaar HJ. The invasion of fatty liver disease in liver transplantation. Transpl Int 2016; 29 (04) 416-417
  • 5 Xu J, Liu X, Koyama Y. , et al. The types of hepatic myofibroblasts contributing to liver fibrosis of different etiologies. Front Pharmacol 2014; 5: 167
  • 6 Mederacke I, Hsu CC, Troeger JS. , et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 2013; 4: 2823
  • 7 Wree A, Mehal WZ, Feldstein AE. Targeting cell death and sterile inflammation loop for the treatment of nonalcoholic steatohepatitis. Semin Liver Dis 2016; 36 (01) 27-36
  • 8 Thapaliya S, Wree A, Povero D. , et al. Caspase 3 inactivation protects against hepatic cell death and ameliorates fibrogenesis in a diet-induced NASH model. Dig Dis Sci 2014; 59 (06) 1197-1206
  • 9 Luheshi NM, Giles JA, Lopez-Castejon G, Brough D. Sphingosine regulates the NLRP3-inflammasome and IL-1β release from macrophages. Eur J Immunol 2012; 42 (03) 716-725
  • 10 Takehara T, Tatsumi T, Suzuki T. , et al. Hepatocyte-specific disruption of Bcl-xL leads to continuous hepatocyte apoptosis and liver fibrotic responses. Gastroenterology 2004; 127 (04) 1189-1197
  • 11 Zhan S-S, Jiang JX, Wu J. , et al. Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo. Hepatology 2006; 43 (03) 435-443
  • 12 Garcia-Martinez I, Santoro N, Chen Y. , et al. Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. J Clin Invest 2016; 126 (03) 859-864
  • 13 Povero D, Panera N, Eguchi A. , et al. Lipid-induced hepatocyte-derived extracellular vesicles regulate hepatic stellate cell via microRNAs targeting PPAR-γ. Cell Mol Gastroenterol Hepatol 2015; 1 (06) 646-663.e4
  • 14 Ting JP, Lovering RC, Alnemri ES. , et al. The NLR gene family: a standard nomenclature. Immunity 2008; 28 (03) 285-287
  • 15 Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol 2013; 13 (06) 397-411
  • 16 Pelegrin P. Inflammasome activation by danger signals In: Couillin I, Petrilli V, Martinon F. , eds. The Inflammasomes. Basel, Switzerland: Springer Basel; 2011: 101-121
  • 17 Masumoto J, Taniguchi S, Ayukawa K. , et al. ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells. J Biol Chem 1999; 274 (48) 33835-33838
  • 18 Fernandes-Alnemri T, Wu J, Yu JW. , et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 2007; 14 (09) 1590-1604
  • 19 Lu A, Magupalli VG, Ruan J. , et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 2014; 156 (06) 1193-1206
  • 20 Murakami T, Ockinger J, Yu J. , et al. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc Natl Acad Sci U S A 2012; 109 (28) 11282-11287
  • 21 Hornung V, Bauernfeind F, Halle A. , et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 2008; 9 (08) 847-856
  • 22 Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011; 469 (7329): 221-225
  • 23 Katsnelson MA, Rucker LG, Russo HM, Dubyak GRK. K+ efflux agonists induce NLRP3 inflammasome activation independently of Ca2+ signaling. J Immunol 2015; 194 (08) 3937-3952
  • 24 Muñoz-Planillo R, Kuffa P, Martínez-Colón G, Smith BL, Rajendiran TM, Núñez G. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 2013; 38 (06) 1142-1153
  • 25 Pétrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 2007; 14 (09) 1583-1589
  • 26 Mariathasan S, Weiss DS, Newton K. , et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 2006; 440 (7081): 228-232
  • 27 Compan V, Baroja-Mazo A, López-Castejón G. , et al. Cell volume regulation modulates NLRP3 inflammasome activation. Immunity 2012; 37 (03) 487-500
  • 28 Groß CJ, Mishra R, Schneider KS. , et al. K(+) efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity 2016; 45 (04) 761-773
  • 29 Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 2009; 27: 519-550
  • 30 Auron PE, Webb AC, Rosenwasser LJ. , et al. Nucleotide sequence of human monocyte interleukin 1 precursor cDNA. Proc Natl Acad Sci U S A 1984; 81 (24) 7907-7911
  • 31 López-Castejón G, Brough D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev 2011; 22 (04) 189-195
  • 32 Fantuzzi G, Ku G, Harding MW. , et al. Response to local inflammation of IL-1 beta-converting enzyme- deficient mice. J Immunol 1997; 158 (04) 1818-1824
  • 33 MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North RA, Surprenant A. Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity 2001; 15 (05) 825-835
  • 34 Cullen SP, Kearney CJ, Clancy DM, Martin SJ. Diverse activators of the NLRP3 inflammasome promote il-1β secretion by triggering necrosis. Cell Reports 2015; 11 (10) 1535-1548
  • 35 Liu X, Zhang Z, Ruan J. , et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 2016; 535 (7610): 153-158
  • 36 Martín-Sánchez F, Diamond C, Zeitler M. , et al. Inflammasome-dependent IL-1β release depends upon membrane permeabilisation. Cell Death Differ 2016; 23 (07) 1219-1231
  • 37 de Torre-Minguela C, Barberà-Cremades M, Gómez AI, Martín-Sánchez F, Pelegrín P. Macrophage activation and polarization modify P2X7 receptor secretome influencing the inflammatory process. Sci Rep 2016; 6: 22586
  • 38 Keller M, Rüegg A, Werner S, Beer H-D. Active caspase-1 is a regulator of unconventional protein secretion. Cell 2008; 132 (05) 818-831
  • 39 Gross O, Yazdi AS, Thomas CJ. , et al. Inflammasome activators induce interleukin-1α secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 2012; 36 (03) 388-400
  • 40 Yang D, Postnikov YV, Li Y. , et al. High-mobility group nucleosome-binding protein 1 acts as an alarmin and is critical for lipopolysaccharide-induced immune responses. J Exp Med 2012; 209 (01) 157-171
  • 41 Miao EA, Rajan JV, Aderem A. Caspase-1-induced pyroptotic cell death. Immunol Rev 2011; 243 (01) 206-214
  • 42 Kayagaki N, Warming S, Lamkanfi M. , et al. Non-canonical inflammasome activation targets caspase-11. Nature 2011; 479 (7371): 117-121
  • 43 Shi J, Zhao Y, Wang Y. , et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 2014; 514 (7521): 187-192
  • 44 Kayagaki N, Stowe IB, Lee BL. , et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015; 526 (7575): 666-671
  • 45 Shi J, Zhao Y, Wang K. , et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015; 526 (7575): 660-665
  • 46 Sborgi L, Rühl S, Mulvihill E. , et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J 2016; 35 (16) 1766-1778
  • 47 Ding J, Wang K, Liu W. , et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 2016; 535 (7610): 111-116
  • 48 Perregaux DG, McNiff P, Laliberte R. , et al. Identification and characterization of a novel class of interleukin-1 post-translational processing inhibitors. J Pharmacol Exp Ther 2001; 299 (01) 187-197
  • 49 Baroja-Mazo A, Martín-Sánchez F, Gomez AI. , et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol 2014; 15 (08) 738-748
  • 50 Franklin BS, Bossaller L, De Nardo D. , et al. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat Immunol 2014; 15 (08) 727-737
  • 51 Sagoo P, Garcia Z, Breart B. , et al. In vivo imaging of inflammasome activation reveals a subcapsular macrophage burst response that mobilizes innate and adaptive immunity. Nat Med 2016; 22 (01) 64-71
  • 52 Tzeng T-CJ, Schattgen S, Monks B. , et al. A fluorescent reporter mouse for inflammasome assembly demonstrates an important role for cell-bound and free ASC specks during in vivo infection. Cell Reports 2016; 16 (02) 571-582
  • 53 Boaru SG, Borkham-Kamphorst E, Tihaa L, Haas U, Weiskirchen R. Expression analysis of inflammasomes in experimental models of inflammatory and fibrotic liver disease. J Inflamm (Lond) 2012; 9 (01) 49
  • 54 Wree A, Eguchi A, McGeough MD. , et al. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology 2014; 59 (03) 898-910
  • 55 Wree A, McGeough MD, Peña CA. , et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. J Mol Med (Berl) 2014; 92 (10) 1069-1082
  • 56 Isoda K, Sawada S, Ayaori M. , et al. Deficiency of interleukin-1 receptor antagonist deteriorates fatty liver and cholesterol metabolism in hypercholesterolemic mice. J Biol Chem 2005; 280 (08) 7002-7009
  • 57 Kolb M, Margetts PJ, Anthony DC, Pitossi F, Gauldie J. Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest 2001; 107 (12) 1529-1536
  • 58 Gasse P, Mary C, Guenon I. , et al. IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J Clin Invest 2007; 117 (12) 3786-3799
  • 59 Ludwig-Portugall I, Bartok E, Dhana E. , et al. An NLRP3-specific inflammasome inhibitor attenuates crystal-induced kidney fibrosis in mice. Kidney Int 2016; 90 (03) 525-539
  • 60 Yaping Z, Ying W, Luqin D, Ning T, Xuemei A, Xixian Y. Mechanism of interleukin-1β-induced proliferation in rat hepatic stellate cells from different levels of signal transduction. APMIS 2014; 122 (05) 392-398
  • 61 Reiter FP, Wimmer R, Wottke L. , et al. Role of interleukin-1 and its antagonism of hepatic stellate cell proliferation and liver fibrosis in the Abcb4(-/-) mouse model. World J Hepatol 2016; 8 (08) 401-410
  • 62 Yan C, Zhou L, Han Y-P. Contribution of hepatic stellate cells and matrix metalloproteinase 9 in acute liver failure. Liver Int 2008; 28 (07) 959-971
  • 63 Tang N, Zhang YP, Ying W, Yao XX. Interleukin-1β upregulates matrix metalloproteinase-13 gene expression via c-Jun N-terminal kinase and p38 MAPK pathways in rat hepatic stellate cells. Mol Med Rep 2013; 8 (06) 1861-1865
  • 64 Miura K, Kodama Y, Inokuchi S. , et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology 2010; 139 (01) 323-34.e7
  • 65 Kamari Y, Shaish A, Vax E. , et al. Lack of interleukin-1α or interleukin-1β inhibits transformation of steatosis to steatohepatitis and liver fibrosis in hypercholesterolemic mice. J Hepatol 2011; 55 (05) 1086-1094
  • 66 Salguero Palacios R, Roderfeld M, Hemmann S. , et al. Activation of hepatic stellate cells is associated with cytokine expression in thioacetamide-induced hepatic fibrosis in mice. Lab Invest 2008; 88 (11) 1192-1203
  • 67 Gieling RG, Wallace K, Han YP. Interleukin-1 participates in the progression from liver injury to fibrosis. Am J Physiol Gastrointest Liver Physiol 2009; 296 (06) G1324-G1331
  • 68 Dixon LJ, Flask CA, Papouchado BG, Feldstein AE, Nagy LE. Caspase-1 as a central regulator of high fat diet-induced non-alcoholic steatohepatitis. PLoS One 2013; 8 (02) e56100
  • 69 Dixon LJ, Berk M, Thapaliya S, Papouchado BG, Feldstein AE. Caspase-1-mediated regulation of fibrogenesis in diet-induced steatohepatitis. Lab Invest 2012; 92 (05) 713-723
  • 70 Miura K, Yang L, van Rooijen N, Brenner DA, Ohnishi H, Seki E. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology 2013; 57 (02) 577-589
  • 71 Watanabe A, Sohail MA, Gomes DA. , et al. Inflammasome-mediated regulation of hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2009; 296 (06) G1248-G1257
  • 72 Johnson C, Wree A, McGeough MD. , et al. Hepatic stellate cell specific NLRP3 inflammasome activation results in spontaneous fibrosis. Hepatology 2016; 64: 100A
  • 73 Negash AA, Ramos HJ, Crochet N. , et al. IL-1β production through the NLRP3 inflammasome by hepatic macrophages links hepatitis C virus infection with liver inflammation and disease. PLoS Pathog 2013; 9 (04) e1003330
  • 74 Wree A, Schlattjan M, Bechmann LP. , et al. Adipocyte cell size, free fatty acids and apolipoproteins are associated with non-alcoholic liver injury progression in severely obese patients. Metabolism 2014; 63 (12) 1542-1552
  • 75 Cai SM, Yang RQ, Li Y. , et al. Angiotensin-(1–7) improves liver fibrosis by regulating the NLRP3 inflammasome via redox balance modulation. Antioxid Redox Signal 2016; 24 (14) 795-812
  • 76 Adams LA, Wree A, Melton P. , et al. Serum marker of inflammasome activity correlates with liver injury in nonalcoholic fatty liver disease and is influenced by genetic polymorphisms. Hepatology 2015; 62: 1273A
  • 77 López-Castejón G, Pelegrín P. Current status of inflammasome blockers as anti-inflammatory drugs. Expert Opin Investig Drugs 2012; 21 (07) 995-1007
  • 78 Petrasek J, Bala S, Csak T. , et al. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J Clin Invest 2012; 122 (10) 3476-3489
  • 79 Mitchell M. A phase 2, efficacy study of anakinra, pentoxifylline, and zinc compared to methylprednisolone in severe acute alcoholic hepatitis 2016 Available at: https://clinicaltrials.gov/ct2/show/NCT01809132
  • 80 Mancini R, Benedetti A, Jezequel A-M. An interleukin-1 receptor antagonist decreases fibrosis induced by dimethylnitrosamine in rat liver. Virchows Arch 1994; 424 (01) 25-31
  • 81 Zhu R-Z, Xiang D, Xie C. , et al. Protective effect of recombinant human IL-1Ra on CCl4-induced acute liver injury in mice. World J Gastroenterol 2010; 16 (22) 2771-2779
  • 82 Lodder J, Denaës T, Chobert MN. , et al. Macrophage autophagy protects against liver fibrosis in mice. Autophagy 2015; 11 (08) 1280-1292
  • 83 Witek RP, Stone WC, Karaca FG. , et al. Pan-caspase inhibitor VX-166 reduces fibrosis in an animal model of nonalcoholic steatohepatitis. Hepatology 2009; 50 (05) 1421-1430
  • 84 Anstee QM, Concas D, Kudo H. , et al. Impact of pan-caspase inhibition in animal models of established steatosis and non-alcoholic steatohepatitis. J Hepatol 2010; 53 (03) 542-550
  • 85 Barreyro FJ, Holod S, Finocchietto PV. , et al. The pan-caspase inhibitor Emricasan (IDN-6556) decreases liver injury and fibrosis in a murine model of non-alcoholic steatohepatitis. Liver Int 2015; 35 (03) 953-966
  • 86 Szabo G, Iracheta-Vellve A. Inflammasome activation in the liver: focus on alcoholic and non-alcoholic steatohepatitis. Clin Res Hepatol Gastroenterol 2015; 39 (Suppl 1): S18-S23
  • 87 Szabo G, Csak T. Inflammasomes in liver diseases. J Hepatol 2012; 57 (03) 642-654
  • 88 Huang C, Yu W, Cui H. , et al. P2X7 blockade attenuates mouse liver fibrosis. Mol Med Rep 2014; 9 (01) 57-62
  • 89 Ganz M, Bukong TN, Csak T. , et al. Progression of non-alcoholic steatosis to steatohepatitis and fibrosis parallels cumulative accumulation of danger signals that promote inflammation and liver tumors in a high fat-cholesterol-sugar diet model in mice. J Transl Med 2015; 13: 193
  • 90 Iracheta-Vellve A, Petrasek J, Satishchandran A. , et al. Inhibition of sterile danger signals, uric acid and ATP, prevents inflammasome activation and protects from alcoholic steatohepatitis in mice. J Hepatol 2015; 63 (05) 1147-1155
  • 91 Laliberte RE, Perregaux DG, Hoth LR. , et al. Glutathione s-transferase omega 1-1 is a target of cytokine release inhibitory drugs and may be responsible for their effect on interleukin-1beta posttranslational processing. J Biol Chem 2003; 278 (19) 16567-16578
  • 92 Coll RC, Robertson AAB, Chae JJ. , et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 2015; 21 (03) 248-255
  • 93 Primiano MJ, Lefker BA, Bowman MR. , et al. Efficacy and pharmacology of the NLRP3 Inflammasome inhibitor CP-456,773 (CRID3) in murine models of dermal and pulmonary inflammation. J Immunol 2016; 197 (06) 2421-2433
  • 94 Mridha AR, Wree A, Robertson AA. , et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol 2017; ; pii:S0168-8278 (17) 30056-30059 . doi: 10.1016/j.jhep.2017.01.022. [Epub ahead of print]