Semin Thromb Hemost 2018; 44(03): 249-260
DOI: 10.1055/s-0037-1605564
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

von Willebrand Factor and Venous Thromboembolism: Pathogenic Link and Therapeutic Implications

Paolo Calabrò*
1   Division of Cardiology, Department of Cardiothoracic and Respiratory Sciences, University of Campania “Luigi Vanvitelli,” Naples, Italy
,
Felice Gragnano*
1   Division of Cardiology, Department of Cardiothoracic and Respiratory Sciences, University of Campania “Luigi Vanvitelli,” Naples, Italy
,
Enrica Golia
1   Division of Cardiology, Department of Cardiothoracic and Respiratory Sciences, University of Campania “Luigi Vanvitelli,” Naples, Italy
,
Erik Lerkevang Grove
2   Department of Cardiology, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
3   Department of Health, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
› Author Affiliations
Further Information

Publication History

Publication Date:
12 September 2017 (online)

Abstract

Venous thromboembolism (VTE) is a frequent cause of disability and mortality worldwide. Von Willebrand factor (VWF) is a major determinant of hemostasis and clot formation, in both arteries and veins. Although VWF is mainly known for its role in arterial thrombosis, several studies suggest a pathogenic role for VWF and its regulator ADAMTS-13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) in venous thrombosis. Nongenetic and genetic factors, including gene mutations and polymorphisms, aging, hormone status, ABO blood groups, and systemic inflammation, have been involved in the modulation of both VTE predisposition and plasma levels of VWF. In several clinical settings, including inflammatory disease and cancer, VWF and ADAMTS-13 are currently investigated as possible determinants of vein thrombosis. These data indicate VWF as a potential therapeutic target in the management of VTE. Several studies report unselective antagonism of VWF for drugs used in daily clinical practice, including heparin and statins. Selective inhibition of VWF pathway has recently been tested in animal models of arterial and venous thrombosis as a novel therapeutic strategy to prevent platelet aggregation and thrombosis, promote vein lumen recanalization, and improve vein valve competency with excellent safety profile. In this review, we summarize the role of VWF in VTE, focusing on clinical and potential therapeutic implications.

Authors' Contributions

All authors contributed to the conception and design of the article; drafting the article or revising it critically for important intellectual content; and final approval of the version to be published.


* The authors Paolo Calabrò and Felice Gragnano contributed equally to the manuscript.


 
  • References

  • 1 Franchini M, Mannucci PM. Von Willebrand factor: another Janus-faced hemostasis protein. Semin Thromb Hemost 2008; 34 (07) 663-669
  • 2 Lenting PJ, Casari C, Christophe OD, Denis CV. von Willebrand factor: the old, the new and the unknown. J Thromb Haemost 2012; 10 (12) 2428-2437
  • 3 James AH, Eikenboom J, Federici AB. State of the art: von Willebrand disease. Haemophilia 2016; 22 (Suppl. 05) 54-59
  • 4 Nilsson IM. In memory of Erik Jorpes. von Willebrand's disease from 1926-1983. Scand J Haematol Suppl 1984; 40: 21-43
  • 5 Mackman N. Triggers, targets and treatments for thrombosis. Nature 2008; 451 (7181): 914-918
  • 6 Sevitt S. The structure and growth of valve-pocket thrombi in femoral veins. J Clin Pathol 1974; 27 (07) 517-528
  • 7 Gresele P, Momi S, Migliacci R. Endothelium, venous thromboembolism and ischaemic cardiovascular events. Thromb Haemost 2010; 103 (01) 56-61
  • 8 Pannekoek H, Voorberg J. Molecular cloning, expression and assembly of multimeric von Willebrand factor. Baillieres Clin Haematol 1989; 2 (04) 879-896
  • 9 Zhou Y-F, Eng ET, Zhu J, Lu C, Walz T, Springer TA. Sequence and structure relationships within von Willebrand factor. Blood 2012; 120 (02) 449-458
  • 10 Springer TA. von Willebrand factor, Jedi knight of the bloodstream. Blood 2014; 124 (09) 1412-1425
  • 11 Bryckaert M, Rosa JP, Denis CV, Lenting PJ. Of von Willebrand factor and platelets. Cell Mol Life Sci 2015; 72 (02) 307-326
  • 12 Bowie EJ, Solberg Jr LA, Fass DN. , et al. Transplantation of normal bone marrow into a pig with severe von Willebrand's disease. J Clin Invest 1986; 78 (01) 26-30
  • 13 Arya M, Anvari B, Romo GM. , et al. Ultra large multimers of von Willebrand factor form spontaneous high-strength bonds with the platelet glycoprotein Ib-IX complex: studies using optical tweezers. Blood 2002; 99 (11) 3971-3977
  • 14 Padilla A, Moake JL, Bernardo A. , et al. P-selectin anchors newly released ultra large von Willebrand factor multimers to the endothelial cell surface. Blood 2004; 103 (06) 2150-2156
  • 15 Ruggeri ZM. Structure of von Willebrand factor and its function in platelet adhesion and thrombus formation. Best Pract Res Clin Haematol 2001; 14 (02) 257-279
  • 16 Sugita C, Yamashita A, Moriguchi-Goto S. , et al. Factor VIII contributes to platelet-fibrin thrombus formation via thrombin generation under low shear conditions. Thromb Res 2009; 124 (05) 601-607
  • 17 Wang A, Duan Q, Wu J, Liu X, Sun Z. The expression of ADAMTS13 in human microvascular endothelial cells. Blood Coagul Fibrinolysis 2016; 27 (04) 464-466
  • 18 Liu L, Choi H, Bernardo A. , et al. Platelet-derived VWF-cleaving metalloprotease ADAMTS-13. J Thromb Haemost 2005; 3 (11) 2536-2544
  • 19 Feng Y, Li X, Xiao J. , et al. ADAMTS13: more than a regulator of thrombosis. Int J Hematol 2016; 104 (05) 534-539
  • 20 Rogers HJ, Allen C, Lichtin AE. Thrombotic thrombocytopenic purpura: the role of ADAMTS13. Cleve Clin J Med 2016; 83 (08) 597-603
  • 21 Gragnano F, Crisci M, Bigazzi MC. , et al. Von Willebrand factor as a novel player in valvular heart disease: from bench to valve replacement. Angiology 2017; DOI: 10.1177/0003319717708070. . [Epub ahead of print]
  • 22 Gragnano F, Golia E, Natale F. , et al. Von Willebrand Factor and cardiovascular disease: from a biochemical marker to an attractive therapeutic target. Curr Vasc Pharmacol 2017; 15 (05) 404-415
  • 23 van Schooten CJ, Shahbazi S, Groot E. , et al. Macrophages contribute to the cellular uptake of von Willebrand factor and factor VIII in vivo. Blood 2008; 112 (05) 1704-1712
  • 24 Grewal PK, Uchiyama S, Ditto D. , et al. The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat Med 2008; 14 (06) 648-655
  • 25 Pegon JN, Kurdi M, Casari C. , et al. Factor VIII and von Willebrand factor are ligands for the carbohydrate-receptor Siglec-5. Haematologica 2012; 97 (12) 1855-1863
  • 26 Rydz N, Swystun LL, Notley C. , et al. The C-type lectin receptor CLEC4M binds, internalizes, and clears von Willebrand factor and contributes to the variation in plasma von Willebrand factor levels. Blood 2013; 121 (26) 5228-5237
  • 27 Rastegarlari G, Pegon JN, Casari C. , et al. Macrophage LRP1 contributes to the clearance of von Willebrand factor. Blood 2012; 119 (09) 2126-2134
  • 28 Castro-Núñez L, Dienava-Verdoold I, Herczenik E, Mertens K, Meijer AB. Shear stress is required for the endocytic uptake of the factor VIII-von Willebrand factor complex by macrophages. J Thromb Haemost 2012; 10 (09) 1929-1937
  • 29 Brown SA, Eldridge A, Collins PW, Bowen DJ. Increased clearance of von Willebrand factor antigen post-DDAVP in Type 1 von Willebrand disease: is it a potential pathogenic process?. J Thromb Haemost 2003; 1 (08) 1714-1717
  • 30 Gallinaro L, Cattini MG, Sztukowska M. , et al. A shorter von Willebrand factor survival in O blood group subjects explains how ABO determinants influence plasma von Willebrand factor. Blood 2008; 111 (07) 3540-3545
  • 31 Dentali F, Sironi AP, Ageno W. , et al. Non-O blood type is the commonest genetic risk factor for VTE: results from a meta-analysis of the literature. Semin Thromb Hemost 2012; 38 (05) 535-548
  • 32 Nossent AY, VAN Marion V, VAN Tilburg NH. , et al. von Willebrand factor and its propeptide: the influence of secretion and clearance on protein levels and the risk of venous thrombosis. J Thromb Haemost 2006; 4 (12) 2556-2562
  • 33 van Schie MC, van Loon JE, de Maat MP, Leebeek FW. Genetic determinants of von Willebrand factor levels and activity in relation to the risk of cardiovascular disease: a review. J Thromb Haemost 2011; 9 (05) 899-908
  • 34 Smith NL, Rice KM, Bovill EG. , et al. Genetic variation associated with plasma von Willebrand factor levels and the risk of incident venous thrombosis. Blood 2011; 117 (22) 6007-6011
  • 35 Goodeve AC. The genetic basis of von Willebrand disease. Blood Rev 2010; 24 (03) 123-134
  • 36 Vischer UM. von Willebrand factor, endothelial dysfunction, and cardiovascular disease. J Thromb Haemost 2006; 4 (06) 1186-1193
  • 37 Jackson SP. The growing complexity of platelet aggregation. Blood 2007; 109 (12) 5087-5095
  • 38 Andrews RK, Berndt MC. Bernard-Soulier syndrome: an update. Semin Thromb Hemost 2013; 39 (06) 656-662
  • 39 Franchini M, Favaloro EJ, Lippi G. Glanzmann thrombasthenia: an update. Clin Chim Acta 2010; 411 (1-2): 1-6
  • 40 Casa LD, Deaton DH, Ku DN. Role of high shear rate in thrombosis. J Vasc Surg 2015; 61 (04) 1068-1080
  • 41 Savage B, Saldívar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 1996; 84 (02) 289-297
  • 42 Kasirer-Friede A, Cozzi MR, Mazzucato M, De Marco L, Ruggeri ZM, Shattil SJ. Signaling through GP Ib-IX-V activates alpha IIb beta 3 independently of other receptors. Blood 2004; 103 (09) 3403-3411
  • 43 McCarty OJ, Calaminus SD, Berndt MC, Machesky LM, Watson SP. von Willebrand factor mediates platelet spreading through glycoprotein Ib and alpha(IIb)beta3 in the presence of botrocetin and ristocetin, respectively. J Thromb Haemost 2006; 4 (06) 1367-1378
  • 44 Ozaki Y, Asazuma N, Suzuki-Inoue K, Berndt MC. Platelet GPIb-IX-V-dependent signaling. J Thromb Haemost 2005; 3 (08) 1745-1751
  • 45 Bergmeier W, Chauhan AK, Wagner DD. Glycoprotein Ibalpha and von Willebrand factor in primary platelet adhesion and thrombus formation: lessons from mutant mice. Thromb Haemost 2008; 99 (02) 264-270
  • 46 Kulkarni S, Dopheide SM, Yap CL. , et al. A revised model of platelet aggregation. J Clin Invest 2000; 105 (06) 783-791
  • 47 Ni H, Denis CV, Subbarao S. , et al. Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J Clin Invest 2000; 106 (03) 385-392
  • 48 Herbig BA, Diamond SL. Pathological von Willebrand factor fibers resist tissue plasminogen activator and ADAMTS13 while promoting the contact pathway and shear-induced platelet activation. J Thromb Haemost 2015; 13 (09) 1699-1708
  • 49 Strony J, Beaudoin A, Brands D, Adelman B. Analysis of shear stress and hemodynamic factors in a model of coronary artery stenosis and thrombosis. Am J Physiol 1993; 265 (5, Pt 2): H1787-H1796
  • 50 Ruggeri ZM, Orje JN, Habermann R, Federici AB, Reininger AJ. Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood 2006; 108 (06) 1903-1910
  • 51 Badimon L, Badimon JJ, Turitto VT, Fuster V. Role of von Willebrand factor in mediating platelet-vessel wall interaction at low shear rate; the importance of perfusion conditions. Blood 1989; 73 (04) 961-967
  • 52 Takahashi M, Yamashita A, Moriguchi-Goto S. , et al. Critical role of von Willebrand factor and platelet interaction in venous thromboembolism. Histol Histopathol 2009; 24 (11) 1391-1398
  • 53 Stel HV, Sakariassen KS, de Groot PG, van Mourik JA, Sixma JJ. Von Willebrand factor in the vessel wall mediates platelet adherence. Blood 1985; 65 (01) 85-90
  • 54 Savage B, Almus-Jacobs F, Ruggeri ZM. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 1998; 94 (05) 657-666
  • 55 Bernat A, Lale A, Herbert JM. Aurin tricarboxylic acid inhibits experimental venous thrombosis. Thromb Res 1994; 74 (06) 617-627
  • 56 Yamamoto H, Vreys I, Stassen JM, Yoshimoto R, Vermylen J, Hoylaerts MF. Antagonism of vWF inhibits both injury induced arterial and venous thrombosis in the hamster. Thromb Haemost 1998; 79 (01) 202-210
  • 57 Oury C, Daenens K, Hu H, Toth-Zsamboki E, Bryckaert M, Hoylaerts MF. ERK2 activation in arteriolar and venular murine thrombosis: platelet receptor GPIb vs. P2X. J Thromb Haemost 2006; 4 (02) 443-452
  • 58 Chauhan AK, Kisucka J, Lamb CB, Bergmeier W, Wagner DD. von Willebrand factor and factor VIII are independently required to form stable occlusive thrombi in injured veins. Blood 2007; 109 (06) 2424-2429
  • 59 Joglekar MV, Ware J, Xu J, Fitzgerald MEC, Gartner TK. Platelets, glycoprotein Ib-IX, and von Willebrand factor are required for FeCl(3)-induced occlusive thrombus formation in the inferior vena cava of mice. Platelets 2013; 24 (03) 205-212
  • 60 André P, Denis CV, Ware J. , et al. Platelets adhere to and translocate on von Willebrand factor presented by endothelium in stimulated veins. Blood 2000; 96 (10) 3322-3328
  • 61 Brill A, Fuchs TA, Chauhan AK. , et al. von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood 2011; 117 (04) 1400-1407
  • 62 Gragnano F, Sperlongano S, Golia E. , et al. The role of von Willebrand factor in vascular inflammation: from pathogenesis to targeted therapy. Mediators Inflamm 2017; 2017: 5620314
  • 63 Wakefield TW, Myers DD, Henke PK. Mechanisms of venous thrombosis and resolution. Arterioscler Thromb Vasc Biol 2008; 28 (03) 387-391
  • 64 Brill A, Fuchs TA, Savchenko AS. , et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost 2012; 10 (01) 136-144
  • 65 Fuchs TA, Brill A, Duerschmied D. , et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 2010; 107 (36) 15880-15885
  • 66 Martinod K, Wagner DD. Thrombosis: tangled up in NETs. Blood 2014; 123 (18) 2768-2776
  • 67 Larsen TB, Skjøth F, Grove EL, Nielsen PB, Christensen TD. Effectiveness of self-managed oral anticoagulant therapy in patients with recurrent venous thromboembolism. A propensity-matched cohort study. Thromb Haemost 2016; 116 (03) 524-529
  • 68 Bain J, Oyler DR, Smyth SS, Macaulay TE. Pathophysiology and pharmacologic treatment of venous thromboembolism. Curr Drug Targets 2014; 15 (02) 199-209
  • 69 Morange PE, Saut N, Antoni G, Emmerich J, Trégouët DA. Impact on venous thrombosis risk of newly discovered gene variants associated with FVIII and VWF plasma levels. J Thromb Haemost 2011; 9 (01) 229-231
  • 70 Ozel AB, McGee B, Siemieniak D. , et al. Genome-wide studies of von Willebrand factor propeptide identify loci contributing to variation in propeptide levels and von Willebrand factor clearance. J Thromb Haemost 2016; 14 (09) 1888-1898
  • 71 Ohira T, Cushman M, Tsai MY. , et al. ABO blood group, other risk factors and incidence of venous thromboembolism: the Longitudinal Investigation of Thromboembolism Etiology (LITE). J Thromb Haemost 2007; 5 (07) 1455-1461
  • 72 Smith NL, Chen M-H, Dehghan A. , et al; Wellcome Trust Case Control Consortium. Novel associations of multiple genetic loci with plasma levels of factor VII, factor VIII, and von Willebrand factor: The CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) Consortium. Circulation 2010; 121 (12) 1382-1392
  • 73 Zhu Q, Yamakuchi M, Ture S. , et al. Syntaxin-binding protein STXBP5 inhibits endothelial exocytosis and promotes platelet secretion. J Clin Invest 2014; 124 (10) 4503-4516
  • 74 Lotta LA, Tuana G, Yu J. , et al. Next-generation sequencing study finds an excess of rare, coding single-nucleotide variants of ADAMTS13 in patients with deep vein thrombosis. J Thromb Haemost 2013; 11 (07) 1228-1239
  • 75 Tsai AW, Cushman M, Rosamond WD. , et al. Coagulation factors, inflammation markers, and venous thromboembolism: the longitudinal investigation of thromboembolism etiology (LITE). Am J Med 2002; 113 (08) 636-642
  • 76 Migliacci R, Becattini C, Pesavento R. , et al. Endothelial dysfunction in patients with spontaneous venous thromboembolism. Haematologica 2007; 92 (06) 812-818
  • 77 Bombeli T, Jutzi M, De Conno E, Seifert B, Fehr J. In patients with deep-vein thrombosis elevated levels of factor VIII correlate only with von Willebrand factor but not other endothelial cell-derived coagulation and fibrinolysis proteins. Blood Coagul Fibrinolysis 2002; 13 (07) 577-581
  • 78 Jezovnik MK, Poredos P. Idiopathic venous thrombosis is related to systemic inflammatory response and to increased levels of circulating markers of endothelial dysfunction. Int Angiol 2010; 29 (03) 226-231
  • 79 Ocak G, Vossen CY, Verduijn M. , et al. Risk of venous thrombosis in patients with major illnesses: results from the MEGA study. J Thromb Haemost 2013; 11 (01) 116-123
  • 80 Karakaya B, Tombak A, Serin MS, Tiftik N. Change in plasma a disintegrin and metalloprotease with thrombospondin type-1 repeats-13 and von Willebrand factor levels in venous thromboembolic patients. Hematology 2016; 21 (05) 295-299
  • 81 Bruzelius M, Iglesias MJ, Hong M-G. , et al. PDGFB, a new candidate plasma biomarker for venous thromboembolism: results from the VEREMA affinity proteomics study. Blood 2016; 128 (23) e59-e66
  • 82 Timp JF, Lijfering WM, Flinterman LE. , et al. Predictive value of factor VIII levels for recurrent venous thrombosis: results from the MEGA follow-up study. J Thromb Haemost 2015; 13 (10) 1823-1832
  • 83 Yap ES, Timp JF, Flinterman LE. , et al. Elevated levels of factor VIII and subsequent risk of all-cause mortality: results from the MEGA follow-up study. J Thromb Haemost 2015; 13 (10) 1833-1842
  • 84 Ocak G, Vossen CY, Lijfering WM. , et al. Role of hemostatic factors on the risk of venous thrombosis in people with impaired kidney function. Circulation 2014; 129 (06) 683-691
  • 85 Pépin M, Kleinjan A, Hajage D. , et al. ADAMTS-13 and von Willebrand factor predict venous thromboembolism in patients with cancer. J Thromb Haemost 2016; 14 (02) 306-315
  • 86 Goldenberg N, Kahn SR, Solymoss S. Markers of coagulation and angiogenesis in cancer-associated venous thromboembolism. J Clin Oncol 2003; 21 (22) 4194-4199
  • 87 Goertz L, Schneider SW, Desch A. , et al. Heparins that block VEGF-A-mediated von Willebrand factor fiber generation are potent inhibitors of hematogenous but not lymphatic metastasis. Oncotarget 2016; 7 (42) 68527-68545
  • 88 Bauer AT, Suckau J, Frank K. , et al. von Willebrand factor fibers promote cancer-associated platelet aggregation in malignant melanoma of mice and humans. Blood 2015; 125 (20) 3153-3163
  • 89 Trigg DE, Wood MG, Kouides PA, Kadir RA. Hormonal influences on hemostasis in women. Semin Thromb Hemost 2011; 37 (01) 77-86
  • 90 Szpera-Goździewicz A, Majcherek M, Boruczkowski M. , et al. Circulating endothelial cells, circulating endothelial progenitor cells, and von Willebrand factor in pregnancies complicated by hypertensive disorders. Am J Reprod Immunol 2017; 77 (03) e12625
  • 91 Lattuada A, Rossi E, Calzarossa C, Candolfi R, Mannucci PM. Mild to moderate reduction of a von Willebrand factor cleaving protease (ADAMTS-13) in pregnant women with HELLP microangiopathic syndrome. Haematologica 2003; 88 (09) 1029-1034
  • 92 van den Dries LW, Gruters RA, Hövels-van der Borden SB. , et al. von Willebrand Factor is elevated in HIV patients with a history of thrombosis. Front Microbiol 2015; 6: 180
  • 93 Lancellotti S, Basso M, Veca V. , et al. Presence of portal vein thrombosis in liver cirrhosis is strongly associated with low levels of ADAMTS-13: a pilot study. Intern Emerg Med 2016; 11 (07) 959-967
  • 94 Waheed W, Aljerdi S, Decker B, Cushman M, Hamill RW. Cerebral venous thrombosis associated with thyrotoxicosis, the use of desmopressin and elevated factor VIII/von Willebrand factor. BMJ Case Rep 2016; 2016 DOI: 10.1136/bcr-2016-216584.
  • 95 Koster T, Blann AD, Briët E, Vandenbroucke JP, Rosendaal FR. Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep-vein thrombosis. Lancet 1995; 345 (8943): 152-155
  • 96 Lowe GD, Haverkate F, Thompson SG. , et al. Prediction of deep vein thrombosis after elective hip replacement surgery by preoperative clinical and haemostatic variables: the ECAT DVT Study. European Concerted Action on Thrombosis. Thromb Haemost 1999; 81 (06) 879-886
  • 97 Mannucci PM. Venous thromboembolism in von Willebrand disease. Thromb Haemost 2002; 88 (03) 378-379
  • 98 Mazetto BM, Orsi FL, Barnabé A, De Paula ÉV, Flores-Nascimento MC, Annichino-Bizzacchi JM. Increased ADAMTS13 activity in patients with venous thromboembolism. Thromb Res 2012; 130 (06) 889-893
  • 99 Le Behot A, Gauberti M, Martinez De Lizarrondo S. , et al. GpIbα-VWF blockade restores vessel patency by dissolving platelet aggregates formed under very high shear rate in mice. Blood 2014; 123 (21) 3354-3363
  • 100 Calabrò P, Yeh ET. The pleiotropic effects of statins. Curr Opin Cardiol 2005; 20 (06) 541-546
  • 101 Sahebkar A, Serban C, Ursoniu S. , et al; Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group. The impact of statin therapy on plasma levels of von Willebrand factor antigen. Systematic review and meta-analysis of randomised placebo-controlled trials. Thromb Haemost 2016; 115 (03) 520-532
  • 102 Lippi G, Favaloro EJ, Sanchis-Gomar F. Venous thrombosis associated with HMG-CoA reductase inhibitors. Semin Thromb Hemost 2013; 39 (05) 515-532
  • 103 Montalescot G, Bal-dit-Sollier C, Chibedi D. , et al; ARMADA Investigators. Comparison of effects on markers of blood cell activation of enoxaparin, dalteparin, and unfractionated heparin in patients with unstable angina pectoris or non-ST-segment elevation acute myocardial infarction (the ARMADA study). Am J Cardiol 2003; 91 (08) 925-930
  • 104 Martinez de Lizarrondo S, Gakuba C, Herbig BA. , et al. Potent thrombolytic effect of N-acetylcysteine on arterial thrombi. Circulation 2017; 117: 027290
  • 105 Lapchak PA, Doyan S, Fan X, Woods CM. Synergistic effect of AJW200, a von Willebrand factor neutralizing antibody with low dose (0.9 mg/mg) thrombolytic therapy following embolic stroke in rabbits. J Neurol Neurophysiol 2013 4. (2)
  • 106 Fontayne A, Meiring M, Lamprecht S. , et al. The humanized anti-glycoprotein Ib monoclonal antibody h6B4-Fab is a potent and safe antithrombotic in a high shear arterial thrombosis model in baboons. Thromb Haemost 2008; 100 (04) 670-677
  • 107 Wadanoli M, Sako D, Shaw GD. , et al. The von Willebrand factor antagonist (GPG-290) prevents coronary thrombosis without prolongation of bleeding time. Thromb Haemost 2007; 98 (02) 397-405
  • 108 Kageyama S, Yamamoto H, Nakazawa H. , et al. Pharmacokinetics and pharmacodynamics of AJW200, a humanized monoclonal antibody to von Willebrand factor, in monkeys. Arterioscler Thromb Vasc Biol 2002; 22 (01) 187-192
  • 109 Bernardo A, Ball C, Nolasco L, Choi H, Moake JL, Dong JF. Platelets adhered to endothelial cell-bound ultra-large von Willebrand factor strings support leukocyte tethering and rolling under high shear stress. J Thromb Haemost 2005; 3 (03) 562-570
  • 110 Staelens S, Hadders MA, Vauterin S. , et al. Paratope determination of the antithrombotic antibody 82D6A3 based on the crystal structure of its complex with the von Willebrand factor A3-domain. J Biol Chem 2006; 281 (04) 2225-2231
  • 111 De Meyer SF, Staelens S, Badenhorst PN. , et al. Coronary artery in-stent stenosis persists despite inhibition of the von Willebrand factor--collagen interaction in baboons. Thromb Haemost 2007; 98 (06) 1343-1349
  • 112 Zhao YM, Jiang M, Ji SD. , et al. Anti-human VWF monoclonal antibody SZ-123 prevents arterial thrombus formation by inhibiting VWF-collagen and VWF-platelet interactions in Rhesus monkeys. Biochem Pharmacol 2013; 85 (07) 945-953
  • 113 Spiel AO, Mayr FB, Ladani N. , et al. The aptamer ARC1779 is a potent and specific inhibitor of von Willebrand Factor mediated ex vivo platelet function in acute myocardial infarction. Platelets 2009; 20 (05) 334-340
  • 114 Markus HS, McCollum C, Imray C, Goulder MA, Gilbert J, King A. The von Willebrand inhibitor ARC1779 reduces cerebral embolization after carotid endarterectomy: a randomized trial. Stroke 2011; 42 (08) 2149-2153
  • 115 Knöbl P, Jilma B, Gilbert JC, Hutabarat RM, Wagner PG, Jilma-Stohlawetz P. Anti-von Willebrand factor aptamer ARC1779 for refractory thrombotic thrombocytopenic purpura. Transfusion 2009; 49 (10) 2181-2185
  • 116 Siller-Matula JM, Merhi Y, Tanguay J-F. , et al. ARC15105 is a potent antagonist of von Willebrand factor mediated platelet activation and adhesion. Arterioscler Thromb Vasc Biol 2012; 32 (04) 902-909
  • 117 Diaz JA, Wrobleski SK, Alvarado CM. , et al. P-selectin inhibition therapeutically promotes thrombus resolution and prevents vein wall fibrosis better than enoxaparin and an inhibitor to von Willebrand factor. Arterioscler Thromb Vasc Biol 2015; 35 (04) 829-837
  • 118 Peyvandi F, Scully M, Kremer Hovinga JA. , et al; TITAN Investigators. Caplacizumab for acquired thrombotic thrombocytopenic purpura. N Engl J Med 2016; 374 (06) 511-522
  • 119 Kopić A, Benamara K, Piskernik C. , et al. Preclinical assessment of a new recombinant ADAMTS-13 drug product (BAX930) for the treatment of thrombotic thrombocytopenic purpura. J Thromb Haemost 2016; 14 (07) 1410-1419
  • 120 Nakano T, Irie K, Hayakawa K. , et al. Delayed treatment with ADAMTS13 ameliorates cerebral ischemic injury without hemorrhagic complication. Brain Res 2015; 1624: 330-335
  • 121 Cai P, Luo H, Xu H. , et al. Recombinant ADAMTS 13 attenuates brain injury after intracerebral hemorrhage. Stroke 2015; 46 (09) 2647-2653