Semin Thromb Hemost 2018; 44(03): 206-215
DOI: 10.1055/s-0037-1606568
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Circulating MicroRNA as Thrombosis Sentinels: Caveats and Considerations

Jasmine Tay
1   Western Australian Centre for Thrombosis and Haemostasis (WACTH), Murdoch University, Murdoch, Australia
2   Perth Blood Institute, Nedlands, Australia
,
Jim Tiao
1   Western Australian Centre for Thrombosis and Haemostasis (WACTH), Murdoch University, Murdoch, Australia
2   Perth Blood Institute, Nedlands, Australia
,
Quintin Hughes
1   Western Australian Centre for Thrombosis and Haemostasis (WACTH), Murdoch University, Murdoch, Australia
2   Perth Blood Institute, Nedlands, Australia
,
Jessica Jorritsma
1   Western Australian Centre for Thrombosis and Haemostasis (WACTH), Murdoch University, Murdoch, Australia
,
Grace Gilmore
1   Western Australian Centre for Thrombosis and Haemostasis (WACTH), Murdoch University, Murdoch, Australia
2   Perth Blood Institute, Nedlands, Australia
,
Ross Baker
1   Western Australian Centre for Thrombosis and Haemostasis (WACTH), Murdoch University, Murdoch, Australia
2   Perth Blood Institute, Nedlands, Australia
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
19. September 2017 (online)

Abstract

The small noncoding RNAs, microRNAs (or miRNAs), have been implicated in a myriad of diseases and accumulating evidence indicate their potential high value as diagnostic biomarkers. Although their roles in hemostasis and coagulation pathways are less defined, many studies have demonstrated their participation in regulating key factors of hemostasis. However, the mounting challenges associated with the accurate measurement of circulating miRNAs and the involvement of platelet activation in contributing to the circulating miRNA expression profile introduce further complexity to the study of thrombosis-associated miRNAs. This review outlines the current knowledge of miRNAs that have been postulated to regulate key hemostatic factors, and miRNA diagnostic panels in thrombotic disease, with a focus on experimental fundamentals, such as selecting condition-specific reference controls, considerations that are crucial for accurate evaluation of miRNAs in the context of disease biomarkers.

 
  • References

  • 1 Ambros V. The functions of animal microRNAs. Nature 2004; 431 (7006): 350-355
  • 2 He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5 (07) 522-531
  • 3 Carthew RW. Gene regulation by microRNAs. Curr Opin Genet Dev 2006; 16 (02) 203-208
  • 4 Ouellet DL, Perron MP, Gobeil LA, Plante P, Provost P. MicroRNAs in gene regulation: when the smallest governs it all. J Biomed Biotechnol 2006; 2006 (04) 69616
  • 5 Chen HH, Huang WT, Yang LW, Lin CW. The PTEN-AKT-mTOR/RICTOR Pathway in nasal natural killer cell lymphoma is activated by miR-494-3p via PTEN but inhibited by miR-142-3p via RICTOR. Am J Pathol 2015; 185 (05) 1487-1499
  • 6 Nie J, Liu L, Zheng W. , et al. microRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2. Carcinogenesis 2012; 33 (01) 220-225
  • 7 Takagi S, Nakajima M, Kida K, Yamaura Y, Fukami T, Yokoi T. MicroRNAs regulate human hepatocyte nuclear factor 4alpha, modulating the expression of metabolic enzymes and cell cycle. J Biol Chem 2010; 285 (07) 4415-4422
  • 8 Gounaris-Shannon S, Chevassut T. The role of miRNA in haematological malignancy. Bone Marrow Res 2013; 2013: 269107
  • 9 Bronze-da-Rocha E. MicroRNAs expression profiles in cardiovascular diseases. BioMed Res Int 2014; 2014: 985408
  • 10 Nishiguchi T, Imanishi T, Akasaka T. MicroRNAs and cardiovascular diseases. BioMed Res Int 2015; 2015: 682857
  • 11 Chen XM, Huang QC, Yang SL. , et al. Role of microRNAs in the pathogenesis of rheumatoid arthritis: novel perspectives based on review of the literature. Medicine (Baltimore) 2015; 94 (31) e1326
  • 12 Pauley KM, Cha S, Chan EK. MicroRNA in autoimmunity and autoimmune diseases. J Autoimmun 2009; 32 (3-4): 189-194
  • 13 Falanga A, Marchetti M, Vignoli A. Coagulation and cancer: biological and clinical aspects. J Thromb Haemost 2013; 11 (02) 223-233
  • 14 Tracy RP. Thrombin, inflammation, and cardiovascular disease: an epidemiologic perspective. Chest 2003; 124 (3, Suppl): 49S-57S
  • 15 Anglés-Cano E, Guillin MC. Antiphospholipid antibodies and the coagulation cascade. Rheum Dis Clin North Am 2001; 27 (03) 573-586
  • 16 Lee Y, Ahn C, Han J. , et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425 (6956): 415-419
  • 17 Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 2005; 123 (04) 631-640
  • 18 Witkos TM, Koscianska E, Krzyzosiak WJ. Practical aspects of microRNA target prediction. Curr Mol Med 2011; 11 (02) 93-109
  • 19 Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA-target recognition. PLoS Biol 2005; 3 (03) e85
  • 20 Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 2012; 13 (04) 271-282
  • 21 Ludwig N, Leidinger P, Becker K. , et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res 2016; 44 (08) 3865-3877
  • 22 Diehl P, Fricke A, Sander L. , et al. Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovasc Res 2012; 93 (04) 633-644
  • 23 Tay JW, Romeo G, Hughes QW, Baker RI. Micro-ribonucleic acid 494 regulation of protein S expression. J Thromb Haemost 2013; 11 (08) 1547-1555
  • 24 Tay J, Tiao J, Hughes Q, Gilmore G, Baker R. Therapeutic potential of miR-494 in thrombosis and other diseases: a review. Aust J Chem 2016; 69 (10) 1078-1093
  • 25 Ali HO, Arroyo AB, González-Conejero R. , et al. The role of microRNA-27a/b and microRNA-494 in estrogen-mediated downregulation of tissue factor pathway inhibitor α. J Thromb Haemost 2016; 14 (06) 1226-1237
  • 26 Gerrits AJ, Koekman CA, van Haeften TW, Akkerman JW. Increased tissue factor expression in diabetes mellitus type 2 monocytes caused by insulin resistance. J Thromb Haemost 2011; 9 (04) 873-875
  • 27 Rak J, Milsom C, Magnus N, Yu J. Tissue factor in tumour progression. Best Pract Res Clin Haematol 2009; 22 (01) 71-83
  • 28 Funderburg NT, Mayne E, Sieg SF. , et al. Increased tissue factor expression on circulating monocytes in chronic HIV infection: relationship to in vivo coagulation and immune activation. Blood 2010; 115 (02) 161-167
  • 29 Holy EW, Tanner FC. Tissue factor in cardiovascular disease pathophysiology and pharmacological intervention. Adv Pharmacol 2010; 59: 259-292
  • 30 Zhang X, Yu H, Lou JR. , et al. MicroRNA-19 (miR-19) regulates tissue factor expression in breast cancer cells. J Biol Chem 2011; 286 (02) 1429-1435
  • 31 Yu G, Li H, Wang X. , et al. MicroRNA-19a targets tissue factor to inhibit colon cancer cells migration and invasion. Mol Cell Biochem 2013; 380 (1-2): 239-247
  • 32 Li S, Ren J, Xu N. , et al. MicroRNA-19b functions as potential anti-thrombotic protector in patients with unstable angina by targeting tissue factor. J Mol Cell Cardiol 2014; 75: 49-57
  • 33 Teruel R, Pérez-Sánchez C, Corral J. , et al. Identification of miRNAs as potential modulators of tissue factor expression in patients with systemic lupus erythematosus and antiphospholipid syndrome. J Thromb Haemost 2011; 9 (10) 1985-1992
  • 34 Li S, Chen H, Ren J. , et al. MicroRNA-223 inhibits tissue factor expression in vascular endothelial cells. Atherosclerosis 2014; 237 (02) 514-520
  • 35 Chuang TD, Luo X, Panda H, Chegini N. miR-93/106b and their host gene, MCM7, are differentially expressed in leiomyomas and functionally target F3 and IL-8. Mol Endocrinol 2012; 26 (06) 1028-1042
  • 36 Eisenreich A, Rauch U. Regulation of the Tissue Factor Isoform Expression and Thrombogenicity of HMEC-1 by miR-126 and miR-19a. Cell Biol: Res Ther 2013; 2 (01) DOI: 10.4172/2324-9293.1000101.
  • 37 Foekens JA, Peters HA, Look MP. , et al. The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients. Cancer Res 2000; 60 (03) 636-643
  • 38 Nielsen HJ, Christensen IJ, Sørensen S, Moesgaard F, Brünner N. Preoperative plasma plasminogen activator inhibitor type-1 and serum C-reactive protein levels in patients with colorectal cancer. The RANX05 Colorectal Cancer Study Group. Ann Surg Oncol 2000; 7 (08) 617-623
  • 39 Andreasen PA. PAI-1 - a potential therapeutic target in cancer. Curr Drug Targets 2007; 8 (09) 1030-1041
  • 40 Palmieri D, Lee JW, Juliano RL, Church FC. Plasminogen activator inhibitor-1 and -3 increase cell adhesion and motility of MDA-MB-435 breast cancer cells. J Biol Chem 2002; 277 (43) 40950-40957
  • 41 Stefansson S, McMahon GA, Petitclerc E, Lawrence DA. Plasminogen activator inhibitor-1 in tumor growth, angiogenesis and vascular remodeling. Curr Pharm Des 2003; 9 (19) 1545-1564
  • 42 Villadsen SB, Bramsen JB, Ostenfeld MS. , et al. The miR-143/-145 cluster regulates plasminogen activator inhibitor-1 in bladder cancer. Br J Cancer 2012; 106 (02) 366-374
  • 43 Patel N, Tahara SM, Malik P, Kalra VK. Involvement of miR-30c and miR-301a in immediate induction of plasminogen activator inhibitor-1 by placental growth factor in human pulmonary endothelial cells. Biochem J 2011; 434 (03) 473-482
  • 44 Luo M, Li R, Ren M. , et al. Hyperglycaemia-induced reciprocal changes in miR-30c and PAI-1 expression in platelets. Sci Rep 2016; 6: 36687
  • 45 Fort A, Borel C, Migliavacca E, Antonarakis SE, Fish RJ, Neerman-Arbez M. Regulation of fibrinogen production by microRNAs. Blood 2010; 116 (14) 2608-2615
  • 46 Salloum-Asfar S, Teruel-Montoya R, Arroyo AB. , et al. Regulation of coagulation factor XI expression by microRNAs in the human liver. PLoS One 2014; 9 (11) e111713
  • 47 Zhao L, Hua C, Li Y, Sun Q, Wu W. miR-525-5p inhibits ADAMTS13 and is correlated with ischemia/reperfusion injury-induced neuronal cell death. Int J Clin Exp Med 2015; 8 (10) 18115-18122
  • 48 Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 2010; 11 (08) R90
  • 49 Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource: targets and expression. Nucleic Acids Res 2008; 36 (Database issue): D149-D153
  • 50 Krek A, Grün D, Poy MN. , et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37 (05) 495-500
  • 51 Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136 (02) 215-233
  • 52 Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015; 4: e05005
  • 53 Miranda KC, Huynh T, Tay Y. , et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 2006; 126 (06) 1203-1217
  • 54 Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA 2004; 10 (10) 1507-1517
  • 55 Huang HY, Chien CH, Jen KH, Huang HD. RegRNA: an integrated web server for identifying regulatory RNA motifs and elements. Nucleic Acids Res 2006; 34 (Web Server issue): W429-34
  • 56 Maragkakis M, Alexiou P, Papadopoulos GL. , et al. Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinformatics 2009; 10: 295
  • 57 Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120 (01) 15-20
  • 58 Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19 (01) 92-105
  • 59 Hofacker IL. Vienna RNA secondary structure server. Nucleic Acids Res 2003; 31 (13) 3429-3431
  • 60 Liu B, Li J, Cairns MJ. Identifying miRNAs, targets and functions. Brief Bioinform 2014; 15 (01) 1-19
  • 61 Long D, Lee R, Williams P, Chan CY, Ambros V, Ding Y. Potent effect of target structure on microRNA function. Nat Struct Mol Biol 2007; 14 (04) 287-294
  • 62 Reinhart BJ, Slack FJ, Basson M. , et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans . Nature 2000; 403 (6772): 901-906
  • 63 Calin GA, Dumitru CD, Shimizu M. , et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002; 99 (24) 15524-15529
  • 64 Chen X, Ba Y, Ma L. , et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008; 18 (10) 997-1006
  • 65 Freedman JE, Ercan B, Morin KM. , et al. The distribution of circulating microRNA and their relation to coronary disease. F1000 Res 2012; 1: 50
  • 66 Chen SY, Wang Y, Telen MJ, Chi JT. The genomic analysis of erythrocyte microRNA expression in sickle cell diseases. PLoS One 2008; 3 (06) e2360
  • 67 Landry P, Plante I, Ouellet DL, Perron MP, Rousseau G, Provost P. Existence of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol 2009; 16 (09) 961-966
  • 68 Mitchell PS, Parkin RK, Kroh EM. , et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008; 105 (30) 10513-10518
  • 69 Zernecke A, Bidzhekov K, Noels H. , et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2009; 2 (100) ra81
  • 70 Yamada Y, Enokida H, Kojima S. , et al. MiR-96 and miR-183 detection in urine serve as potential tumor markers of urothelial carcinoma: correlation with stage and grade, and comparison with urinary cytology. Cancer Sci 2011; 102 (03) 522-529
  • 71 Park NJ, Zhou H, Elashoff D. , et al. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res 2009; 15 (17) 5473-5477
  • 72 Gilad S, Meiri E, Yogev Y. , et al. Serum microRNAs are promising novel biomarkers. PLoS One 2008; 3 (09) e3148
  • 73 Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 2014; 20 (08) 460-469
  • 74 Reddy KB. MicroRNA (miRNA) in cancer. Cancer Cell Int 2015; 15: 38
  • 75 Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 2017; 9 (06) 852
  • 76 Callari M, Dugo M, Musella V. , et al. Comparison of microarray platforms for measuring differential microRNA expression in paired normal/cancer colon tissues. PLoS One 2012; 7 (09) e45105
  • 77 Leidner RS, Li L, Thompson CL. Dampening enthusiasm for circulating microRNA in breast cancer. PLoS One 2013; 8 (03) e57841
  • 78 Farr RJ, Januszewski AS, Joglekar MV. , et al. A comparative analysis of high-throughput platforms for validation of a circulating microRNA signature in diabetic retinopathy. Sci Rep 2015; 5: 10375
  • 79 Mozaffarian D, Benjamin EJ, Go AS. , et al; Writing Group Members; American Heart Association Statistics Committee; Stroke Statistics Subcommittee. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 2016; 133 (04) e38-e360
  • 80 Liu DZ, Tian Y, Ander BP. , et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 2010; 30 (01) 92-101
  • 81 Yuan Y, Wang JY, Xu LY, Cai R, Chen Z, Luo BY. MicroRNA expression changes in the hippocampi of rats subjected to global ischemia. J Clin Neurosci 2010; 17 (06) 774-778
  • 82 Peng G, Yuan Y, Wu S, He F, Hu Y, Luo B. MicroRNA let-7e is a potential circulating biomarker of acute stage ischemic stroke. Transl Stroke Res 2015; 6 (06) 437-445
  • 83 Tijsen AJ, Creemers EE, Moerland PD. , et al. MiR423-5p as a circulating biomarker for heart failure. Circ Res 2010; 106 (06) 1035-1039
  • 84 Fukushima Y, Nakanishi M, Nonogi H, Goto Y, Iwai N. Assessment of plasma miRNAs in congestive heart failure. Circ J 2011; 75 (02) 336-340
  • 85 Sondermeijer BM, Bakker A, Halliani A. , et al. Platelets in patients with premature coronary artery disease exhibit upregulation of miRNA340* and miRNA624*. PLoS One 2011; 6 (10) e25946
  • 86 Wang X, Sundquist K, Elf JL. , et al. Diagnostic potential of plasma microRNA signatures in patients with deep-vein thrombosis. Thromb Haemost 2016; 116 (02) 328-336
  • 87 Chomczynski P, Wilfinger WW, Eghbalnia HR, Kennedy A, Rymaszewski M, Mackey K. Inter-individual differences in RNA levels in human peripheral blood. PLoS One 2016; 11 (02) e0148260
  • 88 MacLellan SA, MacAulay C, Lam S, Garnis C. Pre-profiling factors influencing serum microRNA levels. BMC Clin Pathol 2014; 14: 27
  • 89 Willeit P, Zampetaki A, Dudek K. , et al. Circulating microRNAs as novel biomarkers for platelet activation. Circ Res 2013; 112 (04) 595-600
  • 90 Risitano A, Beaulieu LM, Vitseva O, Freedman JE. Platelets and platelet-like particles mediate intercellular RNA transfer. Blood 2012; 119 (26) 6288-6295
  • 91 Laffont B, Corduan A, Plé H. , et al. Activated platelets can deliver mRNA regulatory Ago2•microRNA complexes to endothelial cells via microparticles. Blood 2013; 122 (02) 253-261
  • 92 Mitchell AJ, Gray WD, Hayek SS. , et al. Platelets confound the measurement of extracellular miRNA in archived plasma. Sci Rep 2016; 6: 32651
  • 93 Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 2010; 50 (04) 298-301
  • 94 Sourvinou IS, Markou A, Lianidou ES. Quantification of circulating miRNAs in plasma: effect of preanalytical and analytical parameters on their isolation and stability. J Mol Diagn 2013; 15 (06) 827-834
  • 95 Wang K, Yuan Y, Cho JH, McClarty S, Baxter D, Galas DJ. Comparing the microRNA spectrum between serum and plasma. PLoS One 2012; 7 (07) e41561
  • 96 Kirschner MB, Kao SC, Edelman JJ. , et al. Haemolysis during sample preparation alters microRNA content of plasma. PLoS One 2011; 6 (09) e24145
  • 97 Pritchard CC, Kroh E, Wood B. , et al. Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Phila) 2012; 5 (03) 492-497
  • 98 Iio A, Takagi T, Miki K, Naoe T, Nakayama A, Akao Y. DDX6 post-transcriptionally down-regulates miR-143/145 expression through host gene NCR143/145 in cancer cells. Biochim Biophys Acta 2013; 1829 (10) 1102-1110
  • 99 Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY. MicroRNA-34b and microRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 2007; 67 (18) 8433-8438
  • 100 Pineles BL, Romero R, Montenegro D. , et al. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am J Obstet Gynecol 2007; 196 (03) 261.e1-261.e6
  • 101 Benz F, Roderburg C, Vargas Cardenas D. , et al. U6 is unsuitable for normalization of serum miRNA levels in patients with sepsis or liver fibrosis. Exp Mol Med 2013; 45: e42
  • 102 Qi R, Weiland M, Gao XH, Zhou L, Mi QS. Identification of endogenous normalizers for serum microRNAs by microarray profiling: U6 small nuclear RNA is not a reliable normalizer. Hepatology 2012; 55 (05) 1640-1642 , author reply 1642–1643
  • 103 Song J, Bai Z, Han W. , et al. Identification of suitable reference genes for qPCR analysis of serum microRNA in gastric cancer patients. Dig Dis Sci 2012; 57 (04) 897-904
  • 104 Wang J, Chen J, Chang P. , et al. MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res (Phila) 2009; 2 (09) 807-813
  • 105 Redova M, Poprach A, Nekvindova J. , et al. Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J Transl Med 2012; 10: 55
  • 106 Tay JW, James I, Hughes QW, Tiao JY, Baker RI. Identification of reference miRNAs in plasma useful for the study of oestrogen-responsive miRNAs associated with acquired Protein S deficiency in pregnancy. BMC Res Notes 2017; 10: 312 . Doi: 10.1186/s13104-017-2636-3.
  • 107 Dolz S, Górriz D, Tembl JI. , et al. Circulating microRNAs as novel biomarkers of stenosis progression in asymptomatic carotid stenosis. Stroke 2017; 48 (01) 10-16
  • 108 Ovchinnikova ES, Schmitter D, Vegter EL. , et al. Signature of circulating microRNAs in patients with acute heart failure. Eur J Heart Fail 2016; 18 (04) 414-423
  • 109 Starikova I, Jamaly S, Sorrentino A. , et al. Differential expression of plasma miRNAs in patients with unprovoked venous thromboembolism and healthy control individuals. Thromb Res 2015; 136 (03) 566-572
  • 110 Xiao J, Jing ZC, Ellinor PT. , et al. MicroRNA-134 as a potential plasma biomarker for the diagnosis of acute pulmonary embolism. J Transl Med 2011; 9: 159
  • 111 Sørensen SS, Nygaard AB, Nielsen MY, Jensen K, Christensen T. miRNA expression profiles in cerebrospinal fluid and blood of patients with acute ischemic stroke. Transl Stroke Res 2014; 5 (06) 711-718
  • 112 Wang Y, Ma Z, Kan P, Zhang B. The diagnostic value of serum miRNA-221-3p, miRNA-382-5p, and miRNA-4271 in ischemic stroke. J Stroke Cerebrovasc Dis 2017; 26 (05) 1055-1060
  • 113 Kim BS, Jung JY, Jeon JY, Kim HA, Suh CH. Circulating hsa-miR-30e-5p, hsa-miR-92a-3p, and hsa-miR-223-3p may be novel biomarkers in systemic lupus erythematosus. HLA 2016; 88 (04) 187-193
  • 114 Chen JQ, Papp G, Póliska S. , et al. MicroRNA expression profiles identify disease-specific alterations in systemic lupus erythematosus and primary Sjögren's syndrome. PLoS One 2017; 12 (03) e0174585
  • 115 Pérez-Sánchez C, Aguirre MA, Ruiz-Limón P. , et al. ‘Atherothrombosis-associated microRNAs in antiphospholipid syndrome and systemic lupus erythematosus patients’. Sci Rep 2016; 6: 31375