Semin Neurol 2017; 37(05): 580-588
DOI: 10.1055/s-0037-1607986
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Imaging for Epilepsy Surgery

Vamsidhar Chavakula
1   Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
,
G. Rees Cosgrove
1   Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
05 December 2017 (online)

Abstract

Successful epilepsy surgery requires accurate localization of the zone of seizure onset and its complete removal without causing any permanent neurological deficits. While clinical semiology, ictal EEG recordings, and neuropsychological testing are all useful in defining the seizure focus, advanced neuroimaging has emerged as the most important localizing tool. Structural and metabolic imaging can now identify subtle cortical abnormalities that if consistent with other presurgical evaluation investigations, can improve surgical outcomes. Functional imaging can also be helpful in defining eloquent cortex and its relationship to planned surgical resection sites to reduce the risk of neurological impairment. This article explores several advanced neuroimaging techniques and their role in the surgical treatment of epilepsy.

 
  • References

  • 1 Picot MC, Baldy-Moulinier M, Daurès JP, Dujols P, Crespel A. The prevalence of epilepsy and pharmacoresistant epilepsy in adults: a population-based study in a Western European country. Epilepsia 2008; 49 (07) 1230-1238
  • 2 Kwan P, Arzimanoglou A, Berg AT. , et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2010; 51 (06) 1069-1077
  • 3 Duncan JS. Imaging in the surgical treatment of epilepsy. Nat Rev Neurol 2010; 6 (10) 537-550
  • 4 Shorvon S. Seizure type and anatomical location of seizures. Handbook of Epilepsy Treatment. Chichester, UK: Wiley-Blackwell; 2010: 6-18
  • 5 Jeong SW, Lee SK, Kim KK, Kim H, Kim JY, Chung CK. Prognostic factors in anterior temporal lobe resections for mesial temporal lobe epilepsy: multivariate analysis. Epilepsia 1999; 40 (12) 1735-1739
  • 6 Wiebe S, Blume WT, Girvin JP, Eliasziw M. ; Effectiveness and Efficiency of Surgery for Temporal Lobe Epilepsy Study Group. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med 2001; 345 (05) 311-318
  • 7 Berkovic SF, McIntosh AM, Kalnins RM. , et al. Preoperative MRI predicts outcome of temporal lobectomy: an actuarial analysis. Neurology 1995; 45 (07) 1358-1363
  • 8 Knake S, Triantafyllou C, Wald LL. , et al. 3T phased array MRI improves the presurgical evaluation in focal epilepsies: a prospective study. Neurology 2005; 65 (07) 1026-1031
  • 9 De Ciantis A, Barba C, Tassi L. , et al. 7T MRI in focal epilepsy with unrevealing conventional field strength imaging. Epilepsia 2016; 57 (03) 445-454
  • 10 De Ciantis A, Barkovich AJ, Cosottini M. , et al. Ultra-high-field MR imaging in polymicrogyria and epilepsy. Am J Neuroradiol 2015; 36 (02) 309-316
  • 11 Seidenberg M, Kelly KG, Parrish J. , et al. Ipsilateral and contralateral MRI volumetric abnormalities in chronic unilateral temporal lobe epilepsy and their clinical correlates. Epilepsia 2005; 46 (03) 420-430
  • 12 Xu C, Pham DL, Rettmann ME, Yu DN, Prince JL. Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE Trans Med Imaging 1999; 18 (06) 467-480
  • 13 Bernasconi A, Bernasconi N, Bernhardt BC, Schrader D. Advances in MRI for ‘cryptogenic’ epilepsies. Nat Rev Neurol 2011; 7 (02) 99-108
  • 14 Hong SJ, Kim H, Schrader D, Bernasconi N, Bernhardt BC, Bernasconi A. Automated detection of cortical dysplasia type II in MRI-negative epilepsy. Neurology 2014; 83 (01) 48-55
  • 15 Peng SJ, Harnod T, Tsai JZ. , et al. Evaluation of subcortical grey matter abnormalities in patients with MRI-negative cortical epilepsy determined through structural and tensor magnetic resonance imaging. BMC Neurol 2014; 14: 104
  • 16 Adler S, Wagstyl K, Gunny R. , et al. Novel surface features for automated detection of focal cortical dysplasias in paediatric epilepsy. Neuroimage Clin 2016; 14: 18-27
  • 17 Thesen T, Quinn BT, Carlson C. , et al. Detection of epileptogenic cortical malformations with surface-based MRI morphometry. PLoS One 2011; 6 (02) e16430
  • 18 Spader HS, Ellermeier A, O'Muircheartaigh J. , et al. Advances in myelin imaging with potential clinical application to pediatric imaging. Neurosurg Focus 2013; 34 (04) E9
  • 19 Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data. Magn Reson Med 2000; 44 (04) 625-632
  • 20 Gross DW. Diffusion tensor imaging in temporal lobe epilepsy. Epilepsia 2011; 52 (Suppl. 04) 32-34
  • 21 Sivakanthan S, Neal E, Murtagh R, Vale FL. The evolving utility of diffusion tensor tractography in the surgical management of temporal lobe epilepsy: a review. Acta Neurochir (Wien) 2016; 158 (11) 2185-2193
  • 22 Concha L, Beaulieu C, Collins DL, Gross DW. White-matter diffusion abnormalities in temporal-lobe epilepsy with and without mesial temporal sclerosis. J Neurol Neurosurg Psychiatry 2009; 80 (03) 312-319
  • 23 Bello L, Gambini A, Castellano A. , et al. Motor and language DTI Fiber Tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. Neuroimage 2008; 39 (01) 369-382
  • 24 Winston GP, Yogarajah M, Symms MR, McEvoy AW, Micallef C, Duncan JS. Diffusion tensor imaging tractography to visualize the relationship of the optic radiation to epileptogenic lesions prior to neurosurgery. Epilepsia 2011; 52 (08) 1430-1438
  • 25 Winston GP. Epilepsy surgery, vision, and driving: what has surgery taught us and could modern imaging reduce the risk of visual deficits?. Epilepsia 2013; 54 (11) 1877-1888
  • 26 Thudium MO, Campos AR, Urbach H, Clusmann H. The basal temporal approach for mesial temporal surgery: sparing the Meyer loop with navigated diffusion tensor tractography. Neurosurgery 2010; 67 (2, Suppl Operative) 385-390
  • 27 Hutchings F, Han CE, Keller SS, Weber B, Taylor PN, Kaiser M. Predicting surgery targets in temporal lobe epilepsy through structural connectome based simulations. PLOS Comput Biol 2015; 11 (12) e1004642
  • 28 Winston GP. The potential role of novel diffusion imaging techniques in the understanding and treatment of epilepsy. Quant Imaging Med Surg 2015; 5 (02) 279-287
  • 29 Assaf Y, Basser PJ. Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. Neuroimage 2005; 27 (01) 48-58
  • 30 Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 2012; 61 (04) 1000-1016
  • 31 Winston GP, Micallef C, Symms MR, Alexander DC, Duncan JS, Zhang H. Advanced diffusion imaging sequences could aid assessing patients with focal cortical dysplasia and epilepsy. Epilepsy Res 2014; 108 (02) 336-339
  • 32 Grade M, Hernandez Tamames JA, Pizzini FB, Achten E, Golay X, Smits M. A neuroradiologist's guide to arterial spin labeling MRI in clinical practice. Neuroradiology 2015; 57 (12) 1181-1202
  • 33 Pendse N, Wissmeyer M, Altrichter S. , et al. Interictal arterial spin-labeling MRI perfusion in intractable epilepsy. J Neuroradiol 2010; 37 (01) 60-63
  • 34 Yoo RE, Yun TJ, Yoon BW. , et al. Identification of cerebral perfusion using arterial spin labeling in patients with seizures in acute settings. PLoS One 2017; 12 (03) e0173538
  • 35 Essig M, Shiroishi MS, Nguyen TB. , et al. Perfusion MRI: the five most frequently asked technical questions. Am J Roentgenol 2013; 200 (01) 24-34
  • 36 Oner AY, Eryurt B, Ucar M. , et al. pASL versus DSC perfusion MRI in lateralizing temporal lobe epilepsy. Acta Radiol 2015; 56 (04) 477-481
  • 37 Kesavadas C, Thomas B. Clinical applications of functional MRI in epilepsy. Indian J Radiol Imaging 2008; 18 (03) 210-217
  • 38 van Graan LA, Lemieux L, Chaudhary UJ. Methods and utility of EEG-fMRI in epilepsy. Quant Imaging Med Surg 2015; 5 (02) 300-312
  • 39 Oishi M, Otsubo H, Kameyama S. , et al. Epileptic spikes: magnetoencephalography versus simultaneous electrocorticography. Epilepsia 2002; 43 (11) 1390-1395
  • 40 Sarikaya I. PET studies in epilepsy. Am J Nucl Med Mol Imaging 2015; 5 (05) 416-430
  • 41 Garibotto V, Picard F. Nuclear medicine imaging in epilepsy. Epileptologie 2013; 30: 109-121
  • 42 Won HJ, Chang KH, Cheon JE. , et al. Comparison of MR imaging with PET and ictal SPECT in 118 patients with intractable epilepsy. Am J Neuroradiol 1999; 20 (04) 593-599
  • 43 Chen T, Guo L. The role of SISCOM in preoperative evaluation for patients with epilepsy surgery: a meta-analysis. Seizure 2016; 41: 43-50
  • 44 Roessler K, Hofmann A, Sommer B. , et al. Resective surgery for medically refractory epilepsy using intraoperative MRI and functional neuronavigation: the Erlangen experience of 415 patients. Neurosurg Focus 2016; 40 (03) E15