Thorac Cardiovasc Surg 2018; 66(01): 053-062
DOI: 10.1055/s-0037-1608761
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Regenerative Medicine/Cardiac Cell Therapy: Pluripotent Stem Cells

Ana G. Duran
1   Universitätsmedizin Berlin, Berlin Brandenburg Center for Regenerative Therapies, Berlin, Germany
,
Olivia Reidell
1   Universitätsmedizin Berlin, Berlin Brandenburg Center for Regenerative Therapies, Berlin, Germany
,
Harald Stachelscheid
1   Universitätsmedizin Berlin, Berlin Brandenburg Center for Regenerative Therapies, Berlin, Germany
2   Berlin Institute of Health, Berlin, Germany
,
Kristin Klose
1   Universitätsmedizin Berlin, Berlin Brandenburg Center for Regenerative Therapies, Berlin, Germany
,
Manfred Gossen
1   Universitätsmedizin Berlin, Berlin Brandenburg Center for Regenerative Therapies, Berlin, Germany
,
Volkmar Falk
3   DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
4   Deutsches Herzzentrum Berlin, Berlin, Germany
,
Wilhelm Röll
5   Klinik für Herzchirurgie, Universitätsklinikum Bonn, Bonn, Nordrhein-Westfalen Germany
,
Christof Stamm
1   Universitätsmedizin Berlin, Berlin Brandenburg Center for Regenerative Therapies, Berlin, Germany
3   DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
4   Deutsches Herzzentrum Berlin, Berlin, Germany
› Author Affiliations
Further Information

Publication History

27 June 2017

12 October 2017

Publication Date:
07 December 2017 (online)

Abstract

For more than 20 years, tremendous efforts have been made to develop cell-based therapies for treatment of heart failure. However, the results of clinical trials using somatic, nonpluripotent stem or progenitor cells have been largely disappointing in both cardiology and cardiac surgery scenarios. Surgical groups were among the pioneers of experimental and clinical myocyte transplantation (“cellular cardiomyoplasty”), but little translational progress was made prior to the development of cellular reprogramming for creation of induced pluripotent stem cells (iPSC). Ever since, protocols have been developed which allow for the derivation of large numbers of autologous cardiomyocytes (CMs) from patient-specific iPSC, moving translational research closer toward clinical pilot trials. However, compared with somatic cell therapy, the technology required for safe and efficacious pluripotent stem cell (PSC)-based therapies is extremely complex and requires tremendous resources and close interactions between basic scientists and clinicians. This review summarizes PSC sources, strategies to derive CMs, current cardiac tissue engineering approaches, concerns regarding immunogenicity and cellular maturity, and highlights the contributions made by surgical groups.

 
  • References

  • 1 Li RK, Jia ZQ, Weisel RD. , et al. Cardiomyocyte transplantation improves heart function. Ann Thorac Surg 1996; 62 (03) 654-660 , discussion 660–661
  • 2 Léobon B, Garcin I, Menasché P, Vilquin J-T, Audinat E, Charpak S. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Natl Acad Sci U S A 2003; 100 (13) 7808-7811
  • 3 Makino S, Fukuda K, Miyoshi S. , et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 1999; 103 (05) 697-705
  • 4 Fisher SA, Doree C, Mathur A, Taggart DP, Martin-Rendon E. Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. Cochrane Database Syst Rev 2016; 12: CD007888
  • 5 Behfar A, Perez-Terzic C, Faustino RS. , et al. Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. J Exp Med 2007; 204 (02) 405-420
  • 6 Menasché P, Vanneaux V, Hagège A. , et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J 2015; 36 (30) 2011-2017
  • 7 Tachibana M, Amato P, Sparman M. , et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 2013; 153 (06) 1228-1238
  • 8 Revazova ES, Turovets NA, Kochetkova OD. , et al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 2007; 9 (03) 432-449
  • 9 Evans MJ, Gurer C, Loike JD, Wilmut I, Schnieke AE, Schon EA. Mitochondrial DNA genotypes in nuclear transfer-derived cloned sheep. Nat Genet 1999; 23 (01) 90-93
  • 10 Takahashi K, Tanabe K, Ohnuki M. , et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131 (05) 861-872
  • 11 Al Kindi A, Ge Y, Shum-Tim D, Chiu RC. Cellular cardiomyoplasty: routes of cell delivery and retention. Front Biosci 2008; 13: 2421-2434
  • 12 Malik N, Rao MS. A review of the methods for human iPSC derivation. Methods Mol Biol 2013; 997: 23-33
  • 13 Kim K, Doi A, Wen B. , et al. Epigenetic memory in induced pluripotent stem cells. Nature 2010; 467 (7313): 285-290
  • 14 Mayshar Y, Ben-David U, Lavon N. , et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 2010; 7 (04) 521-531
  • 15 Laurent LC, Ulitsky I, Slavin I. , et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 2011; 8 (01) 106-118
  • 16 Zhao T, Zhang Z-N, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature 2011; 474 (7350): 212-215
  • 17 González F, Boué S, Izpisúa Belmonte JC. Methods for making induced pluripotent stem cells: reprogramming à la carte. Nat Rev Genet 2011; 12 (04) 231-242
  • 18 Chang C-W, Lai Y-S, Pawlik KM. , et al. Polycistronic lentiviral vector for “hit and run” reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells 2009; 27 (05) 1042-1049
  • 19 Stadtfeld M, Maherali N, Breault DT, Hochedlinger K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2008; 2 (03) 230-240
  • 20 Soldner F, Hockemeyer D, Beard C. , et al. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 2009; 136 (05) 964-977
  • 21 Woltjen K, Michael IP, Mohseni P. , et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009; 458 (7239): 766-770
  • 22 Diecke S, Lu J, Lee J. , et al. Novel codon-optimized mini-intronic plasmid for efficient, inexpensive, and xeno-free induction of pluripotency. Sci Rep 2015; 5 (01) 8081
  • 23 Warren L, Manos PD, Ahfeldt T. , et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010; 7 (05) 618-630
  • 24 Kim D, Kim C-H, Moon J-I. , et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 2009; 4 (06) 472-476
  • 25 Hou P, Li Y, Zhang X. , et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 2013; 341 (6146): 651-654
  • 26 Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad, Ser B, Phys Biol Sci 2009; 85 (08) 348-362
  • 27 Kehat I, Kenyagin-Karsenti D, Snir M. , et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 2001; 108 (03) 407-414
  • 28 Talkhabi M, Aghdami N, Baharvand H. Human cardiomyocyte generation from pluripotent stem cells: a state-of-art. Life Sci 2016; 145: 98-113
  • 29 Chong JJ, Yang X, Don CW. , et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 2014; 510 (7504): 273-277
  • 30 Molina DK, DiMaio VJ. Normal organ weights in men: part I-the heart. Am J Forensic Med Pathol 2012; 33 (04) 362-367
  • 31 Lian X, Hsiao C, Wilson G. , et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 2012; 109 (27) E1848-E1857
  • 32 Kempf H, Andree B, Zweigerdt R. Large-scale production of human pluripotent stem cell derived cardiomyocytes. Adv Drug Deliv Rev 2016; 96: 18-30
  • 33 Anderson D, Self T, Mellor IR, Goh G, Hill SJ, Denning C. Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol Ther 2007; 15 (11) 2027-2036
  • 34 Bizy A, Guerrero-Serna G, Hu B. , et al. Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes. Stem Cell Res (Amst) 2013; 11 (03) 1335-1347
  • 35 Uosaki H, Fukushima H, Takeuchi A. , et al. Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One 2011; 6 (08) e23657
  • 36 Dubois NC, Craft AM, Sharma P. , et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol 2011; 29 (11) 1011-1018
  • 37 Tohyama S, Hattori F, Sano M. , et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 2013; 12 (01) 127-137
  • 38 Hattori F, Chen H, Yamashita H. , et al. Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat Methods 2010; 7 (01) 61-66
  • 39 Ben-David U, Gan QF, Golan-Lev T. , et al. Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell 2013; 12 (02) 167-179
  • 40 van Laake LW, Passier R, Monshouwer-Kloots J. , et al. Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res (Amst) 2007; 1 (01) 9-24
  • 41 Laflamme MA, Chen KY, Naumova AV. , et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 2007; 25 (09) 1015-1024
  • 42 Caspi O, Huber I, Kehat I. , et al. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol 2007; 50 (19) 1884-1893
  • 43 Shiba Y, Fernandes S, Zhu W-Z. , et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 2012; 489 (7415): 322-325
  • 44 Shiba Y, Gomibuchi T, Seto T. , et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 2016; 538 (7625): 388-391
  • 45 Li L, Baroja ML, Majumdar A. , et al. Human embryonic stem cells possess immune-privileged properties. Stem Cells 2004; 22 (04) 448-456
  • 46 Fairchild PJ. The challenge of immunogenicity in the quest for induced pluripotency. Nat Rev Immunol 2010; 10 (12) 868-875
  • 47 Guha P, Morgan JW, Mostoslavsky G, Rodrigues NP, Boyd AS. Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell 2013; 12 (04) 407-412
  • 48 Araki R, Uda M, Hoki Y. , et al. Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature 2013; 494 (7435): 100-104
  • 49 Todorova D, Kim J, Hamzeinejad S, He J, Xu Y. Brief report: immune microenvironment determines the immunogenicity of induced pluripotent stem cell derivatives. Stem Cells 2016; 34 (02) 510-515
  • 50 Liu Z, Wen X, Wang H. , et al. Molecular imaging of induced pluripotent stem cell immunogenicity with in vivo development in ischemic myocardium. PLoS One 2013; 8 (06) e66369
  • 51 Zhao T, Zhang ZN, Westenskow PD. , et al. Humanized mice reveal differential immunogenicity of cells derived from autologous induced pluripotent stem cells. Cell Stem Cell 2015; 17 (03) 353-359
  • 52 Suárez-Alvarez B, Rodriguez RM, Calvanese V. , et al. Epigenetic mechanisms regulate MHC and antigen processing molecules in human embryonic and induced pluripotent stem cells. PLoS One 2010; 5 (04) e10192
  • 53 Tso GH, He J, Chan CW. Engineering of the immune system for human ESC- and iPSC-derived grafts. Drug Discov Today Dis Models 2012; 9 (04) e171-e178 Available at https://doi.org/10.1016/j.ddmod . Accessed September 2, 2012
  • 54 Wilmut I, Leslie S, Martin NG. , et al. Development of a global network of induced pluripotent stem cell haplobanks. Regen Med 2015; 10 (03) 235-238
  • 55 Nakatsuji N, Nakajima F, Tokunaga K. HLA-haplotype banking and iPS cells. Nat Biotechnol 2008; 26 (07) 739-740
  • 56 Brodarac A, Šarić T, Oberwallner B. , et al. Susceptibility of murine induced pluripotent stem cell-derived cardiomyocytes to hypoxia and nutrient deprivation. Stem Cell Res Ther 2015; 6: 83
  • 57 Robertson C, Tran DD, George SC. Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 2013; 31 (05) 829-837
  • 58 Martherus RS, Vanherle SJ, Timmer ED. , et al. Electrical signals affect the cardiomyocyte transcriptome independently of contraction. Physiol Genomics 2010; 42A (04) 283-289
  • 59 Földes G, Mioulane M, Wright JS. , et al. Modulation of human embryonic stem cell-derived cardiomyocyte growth: a testbed for studying human cardiac hypertrophy?. J Mol Cell Cardiol 2011; 50 (02) 367-376
  • 60 Lee Y-K, Ng K-M, Chan Y-C. , et al. Triiodothyronine promotes cardiac differentiation and maturation of embryonic stem cells via the classical genomic pathway. Mol Endocrinol 2010; 24 (09) 1728-1736
  • 61 Wang H, Zhou J, Liu Z, Wang C. Injectable cardiac tissue engineering for the treatment of myocardial infarction. J Cell Mol Med 2010; 14 (05) 1044-1055
  • 62 Hirt MN, Hansen A, Eschenhagen T. Cardiac tissue engineering: state of the art. Circ Res 2014; 114 (02) 354-367
  • 63 Pecha S, Eschenhagen T, Reichenspurner H. Myocardial tissue engineering for cardiac repair. J Heart Lung Transplant 2016; 35 (03) 294-298
  • 64 Khan M, Xu Y, Hua S. , et al. Evaluation of changes in morphology and function of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) cultured on an aligned-nanofiber cardiac patch. PLoS One 2015; 10 (05) e0126338
  • 65 Chen QZ, Ishii H, Thouas GA. , et al. An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials 2010; 31 (14) 3885-3893
  • 66 Maitz MF. Applications of synthetic polymers in clinical medicine. Biosurface and Biotribology. 2015; 1 (03) 161-176
  • 67 Schaaf S, Shibamiya A, Mewe M. , et al. Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PLoS One 2011; 6 (10) e26397
  • 68 Ruan JL, Tulloch NL, Saiget M. , et al. Mechanical stress promotes maturation of human myocardium from pluripotent stem cell-derived progenitors. Stem Cells 2015; 33 (07) 2148-2157
  • 69 Wendel JS, Ye L, Tao R. , et al. Functional effects of a tissue-engineered cardiac patch from human induced pluripotent stem cell-derived cardiomyocytes in a rat infarct model. Stem Cells Transl Med 2015; 4 (11) 1324-1332
  • 70 Weinberger F, Breckwoldt K, Pecha S. , et al. Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells. Sci Transl Med 2016; 8 (363) 363ra148
  • 71 Tulloch NL, Muskheli V, Razumova MV. , et al. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 2011; 109 (01) 47-59
  • 72 Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci 2010; 123 (Pt 24): 4195-4200
  • 73 Stamm C, Nasseri B, Choi Y-H, Hetzer R. Cell therapy for heart disease: great expectations, as yet unmet. Heart Lung Circ 2009; 18 (04) 245-256
  • 74 Joggerst SJ, Hatzopoulos AK. Stem cell therapy for cardiac repair: benefits and barriers. Expert Rev Mol Med 2009; 11: e20
  • 75 Ott HC, Matthiesen TS, Goh S-K. , et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med 2008; 14 (02) 213-221
  • 76 Sarig U, Au-Yeung GCT, Wang Y. , et al. Thick acellular heart extracellular matrix with inherent vasculature: a potential platform for myocardial tissue regeneration. Tissue Eng Part A 2012; 18 (19-20): 2125-2137
  • 77 Oberwallner B, Brodarac A, Choi YH. , et al. Preparation of cardiac extracellular matrix scaffolds by decellularization of human myocardium. J Biomed Mater Res A 2014; 102 (09) 3263-3272
  • 78 Oberwallner B, Brodarac A, Anić P. , et al. Human cardiac extracellular matrix supports myocardial lineage commitment of pluripotent stem cells. Eur J Cardiothorac Surg 2015; 47 (03) 416-425 , discussion 425
  • 79 Seetapun D, Ross JJ. Eliminating the organ transplant waiting list: the future with perfusion decellularized organs. Surgery 2017; 161 (06) 1474-1478
  • 80 Lu T-Y, Lin B, Kim J. , et al. Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun 2013; 4: 2307
  • 81 Matsuura K, Utoh R, Nagase K, Okano T. Cell sheet approach for tissue engineering and regenerative medicine. J Control Release 2014; 190: 228-239
  • 82 Kawamura M, Miyagawa S, Miki K. , et al. Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 2012; 126 (11) (Suppl. 01) S29-S37
  • 83 Chang D, Wen Z, Wang Y. , et al. Ultrastructural features of ischemic tissue following application of a bio-membrane based progenitor cardiomyocyte patch for myocardial infarction repair. PLoS One 2014; 9 (10) e107296
  • 84 Kempf H, Kropp C, Olmer R, Martin U, Zweigerdt R. Cardiac differentiation of human pluripotent stem cells in scalable suspension culture. Nat Protoc 2015; 10 (09) 1345-1361
  • 85 Chen JX, Krane M, Deutsch MA. , et al. Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, and Tbx5. Circ Res 2012; 111 (01) 50-55
  • 86 Tiburcy M, Hudson JE, Balfanz P. , et al. Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation 2017; 135 (19) 1832-1847
  • 87 Weinberger F, Mannhardt I, Eschenhagen T. Engineering cardiac muscle tissue: a maturating field of research. Circ Res 2017; 120 (09) 1487-1500