Synlett 2018; 29(09): 1244-1248
DOI: 10.1055/s-0037-1609489
letter
© Georg Thieme Verlag Stuttgart · New York

PPh3-Mediated [3+2] Cycloaddition Reaction between Bis-Substituted Allenoate and N-Tosylaldimines to Construct 2-Pyrrolines

Xiangwen Kong
a  Department of Pharmaceutical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, P. R. of China   Email: [email protected]
,
Lihua Liu
a  Department of Pharmaceutical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, P. R. of China   Email: [email protected]
,
Siqin Luo
a  Department of Pharmaceutical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, P. R. of China   Email: [email protected]
,
Shilu Fan
b  Department of Chemistry, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, P. R. of China
,
Haisheng Qian
a  Department of Pharmaceutical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, P. R. of China   Email: [email protected]
,
Hua Xiao*
a  Department of Pharmaceutical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, P. R. of China   Email: [email protected]
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (No. 21302034) and the Fundamental Research Funds for the Central Universities (No. 2013HGQC0028).
Further Information

Publication History

Received: 01 February 2018

Accepted after revision: 01 March 2018

Publication Date:
28 March 2018 (online)


Abstract

A triphenylphosphine-promoted [3+2] cycloaddition of α,γ-bis-substituted allenoates and N-tosylaldimines followed by alkene isomerization was disclosed, affording a series of functionalized 2-pyrroline derivatives in moderate chemical yields with random diastereoselectivities.

Supporting Information

 
  • References and Notes

    • 1a Marti C. Carreira EM. J. Am. Chem. Soc. 2005; 127: 11505
    • 1b El-Gamal MI. Brahim I. Hisham N. Aladdin R. Mohammed H. Bahaaeldin A. Eur. J. Med. Chem. 2017; 131: 185
    • 1c Shröder F. Sinnwell V. Baumann H. Kaib M. Chem. Commun. 1996; 2139
    • 2a Wender PA. Strand D. J. Am. Chem. Soc. 2009; 131: 7528
    • 2b Martin MC. Patil DV. France S. J. Org. Chem. 2014; 79: 3030
    • 2c Miura T. Tanaka T. Hiraga K. Stewart SG. Murakami M. J. Am. Chem. Soc. 2013; 135: 13652
    • 2d Peng J. Zhao Y. Zhou J. Ding Y. Chen C. Synthesis 2014; 46: 1881

      For latest reviews of nucleophilic catalysis, see:
    • 3a Wei Y. Shi M. Org. Chem. Front. 2017; 4: 1876
    • 3b Wang T. Han X. Zhong F. Yao W. Lu Y. Acc. Chem. Res. 2016; 49: 1369
    • 3c Gao Y.-N. Shi M. Chin. Chem. Lett. 2017; 28: 493

      For latest examples of nucleophilic catalysis, see:
    • 4a Zhou W. Wang H. Tao M. Zhu C.-Z. Lin T.-Y. Zhang J. Chem. Sci. 2017; 8: 4660
    • 4b Jin Q.-W. Chai Z. Huang Y.-M. Zou G. Zhao G. Beilstein J. Org. Chem. 2016; 12: 725
    • 4c Yang C. Chen X. Tang T. He Z. Org. Lett. 2016; 18: 1486
    • 4d Ni H. Yu Z. Yao W. Lan Y. Ullah N. Lu Y. Chem. Sci. 2017; 8: 5699
    • 4e Zhou W. Ni C. Chen J. Wang D. Tong X. Org. Lett. 2017; 19: 1890
    • 5a Yang L.-J. Wang S. Nie J. Li S. Ma J.-A. Org. Lett. 2013; 15: 5214
    • 5b Chen X.-Y. Lin R.-C. Ye S. Chem. Commun. 2012; 48: 1317
    • 5c Takizawa S. Arteaga F. Yoshida Y. Suzuki M. Sasai H. Org. Lett. 2013; 15: 4142
    • 6a Na R. Jing C. Xu Q. Jiang H. Wu X. Shi J. Zhong J. Wang M. Benitez D. Tkatchouk E. Goddard WA. III. Guo H. Kwon O. J. Am. Chem. Soc. 2011; 133: 13337
    • 6b Wang D. Lei Y. Wei Y. Shi M. Chem. Eur. J. 2014; 20: 15325
    • 7a Huang R. Tao H.-Y. Wang C.-J. Org. Lett. 2017; 19: 1176
    • 7b Wang Z. Xu H. Su Q. Hu P. Shao P.-L. He Y. Lu Y. Org. Lett. 2017; 19: 3111
    • 8a Zhang Q. Zhu Y. Jin H. Huang Y. Chem. Commun. 2017; 53: 3974
    • 8b Qin Z. Liu W. Wang D. He Z. J. Org. Chem. 2016; 81: 4690
    • 8c Zhao H. Meng X. Huang Y. Chem. Commun. 2013; 49: 10513
    • 9a Xu Z. Lu X. J. Org. Chem. 1998; 63: 5031
    • 9b Zhu X.-F. Lan J. Kwon O. J. Am. Chem. Soc. 2003; 125: 4716
    • 9c Sankar MG. Garcia-Castro M. Golz C. Strohmann C. Kumar K. Angew. Chem. Int. Ed. 2016; 55: 9709
    • 10a Li E. Jia P. Liang L. Huang Y. ACS Catal. 2014; 4: 600
    • 10b Li E. Jin H. Jia P. Dong X. Huang Y. Angew. Chem. Int. Ed. 2016; 55: 11591

      For our previous work on phosphine-mediated reaction, see:
    • 11a Xiao H. Chai Z. Yao R.-S. Zhao G. J. Org. Chem. 2013; 78: 9781
    • 11b Xiao H. Duan H. Ye J. Yao R. Ma J. Yuan Z. Zhao G. Org. Lett. 2014; 16: 5462
    • 11c Duan H.-Y. Ma J. Yuan Z. Yao R.-S. Tao W. Xu F. Xiao H. Zhao G. Chin. Chem. Lett. 2015; 26: 646
    • 11d Ma J. Yuan Z. Kong X. Wang H. Li Y. Xiao H. Zhao G. Org. Lett. 2016; 18: 1450
    • 11e Yuan Z.-Z. Kong X.-W. Liu L.-H. Zhu H.-X. Xiao H. Chin. Chem. Lett. 2017; 28: 1469

      For related reactions involving the double-bond migration step, see:
    • 12a Wang H.-F. Yang T. Xu P.-F. Dixon DJ. Chem. Commun. 2009; 3916
    • 12b Wang F. Li Z. Wang J. Li X. Cheng J.-P. J. Org. Chem. 2015; 80: 5279
  • 13 Conducting the reaction at 0 °C or –10 °C resulted in a poor yield and had little influence on diastereoselectivity.
  • 14 See the Supporting Information for details. Other imines activated by alternative electron-withdrawing groups on the nitrogen atom failed to give satisfying results: The use of N-(tert-butoxycarbonyl)benzaldimine provided an intractable and complicated mixture, and the reaction with cyclic ketimine benzo[d]isothiazole 1,1-dioxide gave a trace amount of analogous cycloaddition product.
  • 15 CCDC 1811285 (3j) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.

    • For our previous work on chiral phosphine catalysis, see:
    • 16a Xiao H. Chai Z. Zheng C.-W. Yang Y.-Q. Liu W. Zhang J.-K. Zhao G. Angew. Chem. Int. Ed. 2010; 49: 4467
    • 16b Xiao H. Chai Z. Wang H.-F. Wang X.-W. Cao D.-D. Liu W. Lu Y.-P. Yang Y.-Q. Zhao G. Chem. Eur. J. 2011; 17: 10562
    • 16c Xiao H. Chai Z. Cao D. Wang H. Chen J. Zhao G. Org. Biomol. Chem. 2012; 10: 3195

      For others’ works of asymmetric reaction using our catalyst 4a, see:
    • 17a Gao X. Li Z. Yang W. Liu Y. Chen W. Zhang C. Zheng L. Guo H. Org. Biomol. Chem. 2017; 15: 5298
    • 17b Li S. Liu Y. Huang B. Zhou T. Tao H. Xiao Y. Liu L. Zhang J. ACS Catal. 2017; 7: 2805
    • 17c Dakas P.-Y. Parga JA. Hoing S. Scholer HR. Sterneckert J. Kumar K. Waldmann H. Angew. Chem. Int. Ed. 2013; 52: 9576
  • 18 General Procedure Into a solution of N-tosyl aldimine 1 (0.1 mmol) and bis-substituted allenoate 2 (0.2 mmol) in toluene (1.0 mL) was added PPh3 (0.06 mmol) in one portion. The resulting mixture was stirred at r.t. and monitored by TLC. After the reaction was complete, the mixture was directly subjected to flash column chromatography (PE/EtOAc = 10:1 as the eluent) to furnish the corresponding product 3. Diethyl 2-(5-Phenyl-1-tosyl-4,5-dihydro-1H-pyrrol-2-yl)succinate (3a) Light yellow liquid; 78% yield; inseparable mixture of two diastereoisomers (major and minor), d.r. = 1.2:1. 1H NMR (600 MHz, CDCl3): δ = 7.83 (d, J = 8.2 Hz, 2 H; minor), 7.75 (d, J = 8.4 Hz, 2 H; major), 7.33 (m, 2 H; both isomers), 7.31–7.23 (m, 5 H; both isomers), 5.17 (s 1 H; both isomers), 5.24 (s, 1 H; major), 5.11 (s, 1 H; minor), 5.10–5.05 (m, 1 H; both isomers), 4.57–4.49 (m, 1 H; both isomers), 4.27–4.10 (m, 4 H; both isomers), 3.08–3.02 (m, 1 H; both isomers), 2.82–2.74 (m, 1 H; both isomers), 2.65–2.48 (m, 1 H; both isomers), 2.45 (s, 3 H; minor), 2.42 (s, 3 H; major), 2.28–2.20 (m, 1 H; both isomers), 1.28–1.21 (m, 6 H; both isomers). 13C NMR (150 MHz, CDCl3): δ = 171.8, 171.3, 171.2, 171.0, 144.1, 143.9, 142.6, 142.5, 140.8, 135.5, 134.2, 129.7, 129.6, 128.7, 128.5, 127.8, 127.7, 126.0, 125.8, 114.4, 114.3, 64.7, 64.6, 61.4, 61.2, 60.9, 60.8, 42.2, 41.5, 36.7, 36.2, 35.7, 35.6, 29.7, 21.6, 21.5, 14.1, 14.0. HRMS (ESI): m/z calcd for [M]+(C25H29NO6S): 471.1716; found: 471.1719.