Synlett, Inhaltsverzeichnis Synlett 2018; 29(14): 1875-1880DOI: 10.1055/s-0037-1609558 letter © Georg Thieme Verlag Stuttgart · New YorkPalladium-Catalyzed Arylation of Aromatic Amides Directed by a [4-Chloro-2-(1H-pyrazol-1-yl)phenyl]amine Auxiliary Autoren Institutsangaben Ya-Hua Hu ◊ School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China eMail: jyf@ecust.edu.cn Zhi Xu ◊ School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China eMail: jyf@ecust.edu.cn Ling-Yan Shao School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China eMail: jyf@ecust.edu.cn Ya-Fei Ji* School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China eMail: jyf@ecust.edu.cn Artikel empfehlen Abstract Artikel einzeln kaufen(opens in new window) Alle Artikel dieser Rubrik(opens in new window) ◊ Ya-Hua Hu and Zhi Xu are equal first authors. Abstract A palladium-catalyzed ortho-arylation of aromatic amides directed by [4-chloro-2-(1H-pyrazol-1-yl)phenyl]amine as a bidentate auxiliary has been established. The reaction is characterized by normal working conditions, a broad substrate scope, and a wide functional-group tolerance. In particular, the protocol is compatible with highly sterically demanding ortho-substituted anilides and aryl iodide partners, with good yields. Key words Key wordsC–H activation - arylation - amides - directing groups - palladium catalysis - biaryls Volltext Referenzen References and Notes 1a Kakiuchi F. Murai S. Acc. Chem. Res. 2002; 35: 826 1b Godula K. Sames D. Science 2006; 312: 67 1c Chen X. Engle KM. Wang D.-H. Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094 1d Lyons TM. Sanford MS. Chem. Rev. 2010; 110: 1147 1e Zhou M. Crabtree RH. Chem. Soc. Rev. 2011; 40: 1875 1f McMurray L. O’Hara F. Sanford MS. Chem. Soc. Rev. 2011; 40: 1885 1g Neufeldt SR. Sanford MS. Acc. Chem. Res. 2012; 45: 936 1h Li B.-J. Shi Z.-J. Chem. Soc. Rev. 2012; 41: 5588 1i Yamaguchi J. Yamaguchi AD. Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960 1j Roizen J. Harvey ME. Du Bois J. Acc. Chem. Res. 2012; 45: 911 1k Rouquet G. Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726 1l Zheng C. You S.-L. RSC Adv. 2014; 4: 6173 1m Ackermann L. Acc. Chem. Res. 2014; 47: 281 1n Ros A. Fernández R. Lassaletta JM. Chem. Soc. Rev. 2014; 43: 3229 1o Zhang F. Spring DR. Chem. Soc. Rev. 2014; 43: 6906 1p Yeh C.-H. Chen W.-C. Parthasarathy P. Hong Y.-C. Shin C.-H. Cheng C.-H. Org. Biomol. Chem. 2014; 12: 9105 1q Topczewski JJ. Sanford MS. Chem. Sci. 2015; 6: 70 1r Guo X.-X. Gu D.-W. Wu Z. Zhang W. Chem. Rev. 2015; 115: 1622 1s Yang G. Butt N. Zhang W. Chin. J. Catal. 2016; 37: 98 1t Nareddy P. Jordan F. Szostak M. ACS Catal. 2017; 7: 5721 For selected heteroarene-directed arylations, see: 2a Ackermann L. Org. Lett. 2005; 7: 3123 2b Zaitsev VG. Shabashov D. Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154 2c Ding Q. Ji H. Wang D. Lin Y. Yu W. Peng Y. J. Organomet. Chem. 2012; 711: 62 2d Stephens DE. Lakey-Beitia J. Atesin AC. Ateşin TA. Chavez G. Arman HD. Larionov OV. ACS Catal. 2015; 5: 167 2e Zha G.-F. Qin H.-L. Kantchev EA. B. RSC Adv. 2016; 6: 30875 For selected functional groups directed arylation: 3a Kakiuchi F. Kan S. Igi K. Chatani N. Murai S. J. Am. Chem. Soc. 2003; 125: 1698 3b Wang D.-H. Wasa M. Giri R. Yu J.-Q. J. Am. Chem. Soc. 2008; 130: 7190 3c Shabashov D. Daugulis O. J. Am. Chem. Soc. 2010; 132: 3965 3d Dai H.-X. Stepan AF. Plummer MS. Zhang Y.-H. Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 7222 3e Li W. Xu Z. Sun P. Jiang X. Fang M. Org. Lett. 2011; 13: 1286 3f Yao J. Yu M. Zhang Y. Adv. Synth. Catal. 2012; 354: 3205 3g Corbet M. De Campo F. Angew. Chem. Int. Ed. 2013; 52: 9896 3h Senthilkumar N. Parthasarathy K. Gandeepan P. Cheng C.-H. Chem. Asian J. 2013; 8: 2175 3i Zhang J.-C. Shi J.-L. Wang B.-Q. Hu P. Zhao K.-Q. Shi Z.-J. Chem. Asian J. 2015; 10: 840 3j Daugulis O. Roane J. Tran LD. Acc. Chem. Res. 2015; 48: 1053 3k Rit RK. Yadav MR. Ghosh K. Sahoo AK. Tetrahedron 2015; 71: 4450 3l Reddy C. Bisht N. Parella R. Babu SA. J. Org. Chem. 2016; 81: 12143 3m Zhao S. Liu B. Zhan B.-B. Zhang W.-D. Shi B.-F. Org. Lett. 2016; 18: 4586 3n Nguyen TT. Daugulis O. Chem. Commun. 2017; 53: 4609 3o Zavesky BP. Bartlett SL. Johnson JS. Org. Lett. 2017; 19: 2126 4a Ashenhurst JA. Chem. Soc. Rev. 2010; 39: 540 4b Zhao D. You J. Hu C. Chem. Eur. J. 2011; 17: 5466 4c Mehta VP. Punji B. RSC Adv. 2013; 3: 11957 4d Chan TL. Wu Y. Choy PY. Kwong FY. Chem. Eur. J. 2013; 19: 15802 4e Yamaguchi J. Muto K. Itami K. Eur. J. Org. Chem. 2013; 19 4f Li B. Dixneuf H. Chem. Soc. Rev. 2013; 42: 5744 4g Grzybowski M. Skonieczny K. Butenschön H. Gryko DT. Angew. Chem. Int. Ed. 2013; 52: 9900 4h Aldemir H. Richarz R. Gulder TA. M. Angew. Chem. Int. Ed. 2014; 53: 8286 4i García-López J.-A. Greaney MF. Chem. Soc. Rev. 2016; 45: 6766 4j Leroux FR. Panossian A. Augros D. C. R. Chim. 2017; 20: 682 4k Zhao K. Shen L. Shen Z.-L. Loh T.-P. Chem. Soc. Rev. 2017; 46: 586 4l Yang Y. Lan J. You J. Chem. Rev. 2017; 117: 8787 4m Perry GJ. P. Larrosa I. Eur. J. Org. Chem. 2017; 3517 5a Carey JS. Laffan D. Thomson C. Williams MT. Org. Biomol. Chem. 2006; 4: 2337 5b Murphy AR. Fréchet JM. J. Chem. Rev. 2007; 107: 1066 5c Hughes RA. Moody CJ. Angew. Chem. Int. Ed. 2007; 46: 7930 5d Surry DS. Buchwald SL. Angew. Chem. 2008; 120: 6438 5e Dolle RE. Le Bourdonnec B. Worm K. Morales GA. Thomas CJ. Zhang W. J. Comb. Chem. 2010; 12: 765 5f Bringmann G. Gulder T. Gulder TM. Breuning M. Chem. Rev. 2011; 111: 563 5g Ding Z. Osminski WG. Ren H. Wulff W. Org. Process Res. Dev. 2011; 15: 1089 5h Sengupta S. Mehta G. Tetrahedron Lett. 2017; 58: 1357 6a Daugulis O. Do H.-Q. Shabashov D. Acc. Chem. Res. 2009; 42: 1074 6b Aihara Y. Chatani N. Chem. Sci. 2013; 4: 664 6c Nadres ET. Santos GI. F. Shabashov D. Daugulis O. J. Org. Chem. 2013; 78: 9689 6d Huang L. Li Q. Wang C. Qi C. J. Org. Chem. 2013; 78: 3030 6e Yokota A. Aihara Y. Chatani N. J. Org. Chem. 2014; 79: 11922 7a Lee W.-CC. Shen Y. Gutierrez DA. Li JJ. Org. Lett. 2016; 18: 2660 7b Selvakumar J. Grandhi GS. Sahoo H. Baidya M. RSC Adv. 2016; 6: 79361 7c Lee W.-CC. Tehrani A. Li JJ. Synthesis 2017; 49: 2865 7d Lee W.-CC. Wang W. Li JJ. J. Org. Chem. 2018; 83: 2382 8 Shen Y. Lee W.-CC. Gutierrez DA. Li JJ. J. Org. Chem. 2017; 82: 11620 9 Products 3 and 4; General Procedure A mixture of substrate 1 (0.3 mmol), (het)aryl iodide 2 (0.9 mmol), Pd(OAc)2 (6.7 mg, 10 mol%), and Ag3PO4 (125.6 mg, 1.0 equiv) in p-xylene (2.5 mL) was stirred and then heated at 120 °C for 12 h. Upon completion of the reaction, the mixture was cooled to r.t. and filtered through a pad of Celite. The filtrate was washed with EtOAc (3 × 15 mL) and the organic layers were combined, dried (MgSO4), and concentrated in vacuo to provide a crude product that was purified by column chromatography [silica gel, PE–EtOAc (40:1)] to give the desired product 3 or 4. N-[4-Chloro-2-(1H-pyrazol-1-yl)phenyl]-4′-methoxy-3-methylbiphenyl-2-carboxamide (3f) Yellow oil; yield: 106 mg (85%). 1H NMR (400 MHz, CDCl3): δ = 9.94 (s, 1 H), 8.43 (d, J = 8.8 Hz, 1 H), 7.57 (d, J = 1.6 Hz, 1 H), 7.54 (d, J = 2.8 Hz, 1 H), 7.33 (t, J = 7.6 Hz, 1 H), 7.30 (dd, J 1 = 8.0, J 2 = 2.4 Hz, 1 H), 7.19–7.23 (m, 3 H), 7.19 (d, J = 4.0 Hz, 1 H), 7.17 (d, J = 8.4 Hz, 1 H), 6.70 (d, J = 8.8 Hz, 2 H), 6.39 (t, J = 2.4 Hz, 1 H), 3.73 (s, 3 H), 2.40 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 168.5, 158.7, 141.5 (2 C), 138.9, 136.4, 135.5, 132.5, 130.0, 129.9, 129.8, 129.4 (2 C), 129.2, 129.1, 127.7, 127.4, 124.4, 122.5, 113.7 (2 C), 107.5, 55.2, 19.5. HRMS (EI): m/z [M+] calcd for C24H20ClN3O2: 417.1244; found: 417.1243. 10a Ren Z. Mo F. Dong G. J. Am. Chem. Soc. 2012; 134: 16991 10b Ren Z. Schulz JE. Dong G. Org. Lett. 2015; 17: 2696 10c Shao L.-Y. Li C. Guo Y. Yu K.-K. Zhao F.-Y. Qiao W.-L. Liu H.-W. Liao D.-H. Ji Y.-F. RSC Adv. 2016; 6: 78875 10d Zhu R.-Y. Liu L.-Y. Park HS. Hong K. Wu Y. Senanayake CH. Yu J.-Q. J. Am. Chem. Soc. 2017; 139: 16080 11a Zhao Y. He G. Nack WA. Chen G. Org. Lett. 2012; 14: 2948 11b Nishino M. Hirano K. Satoh T. Miura M. Angew. Chem. Int. Ed. 2013; 52: 4457 11c Gu Q. Al Mamari H. Graczyk K. Diers E. Ackermann L. Angew. Chem. Int. Ed. 2014; 53: 3868 12a Shang R. Ilies L. Matsumoto A. Nakamura E. J. Am. Chem. Soc. 2013; 135: 6030 12b Aihara Y. Chatani N. J. Am. Chem. Soc. 2014; 136: 898 12c Iyanaga M. Aihar Y. Chatani N. J. Org. Chem. 2014; 79: 11933 13 CCDC 1815994 contains the supplementary crystallographic data for compound 4p. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures. 14a Lapointe D. Fagnou K. Chem. Lett. 2010; 39: 1118 14b Balcells D. Clot E. Eisenstein O. Chem. Rev. 2010; 110: 749 14c Musaev DG. Figg TM. Kaledin AL. Chem. Soc. Rev. 2014; 43: 5009 15a Weibel J.-M. Blanc A. Pale P. Chem. Rev. 2008; 108: 3149 15b Arroniz C. Denis JG. Ironmonger A. Rassias G. Larrosa I. Chem. Sci. 2014; 5: 3509 Zusatzmaterial Zusatzmaterial Supporting Information (PDF) (opens in new window)