Synlett, Inhaltsverzeichnis Synlett 2018; 29(18): 2404-2407DOI: 10.1055/s-0037-1609629 letter © Georg Thieme Verlag Stuttgart · New YorkRevisiting Sodium Hypochlorite Pentahydrate (NaOCl·5H2O) for the Oxidation of Alcohols in Acetonitrile without Nitroxyl Radicals Authors Institutsangaben Tsunehisa Hirashita * Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan eMail: hirasita@nitech.ac.jp Yuto Sugihara Shota Ishikawa Yohei Naito Yuta Matsukawa Shuki Araki Artikel empfehlen Abstract Artikel einzeln kaufen(opens in new window) Alle Artikel dieser Rubrik(opens in new window) Abstract Sodium hypochlorite pentahydrate (NaOCl·5H2O) is capable of oxidizing alcohols in acetonitrile at 20 °C without the use of catalysts. The oxidation is selective to allylic, benzylic, and secondary alcohols. Aliphatic primary alcohols are not oxidized. Key words Key wordsoxidation - alcohol - sodium hypochlorite pentahydrate - aldehyde - ketone Volltext Referenzen References and Notes 1a Fernandez MI. Tojo G. Oxidation of Alcohols to Aldehydes and Ketones: A Guide to Current Common Practice. Springer; New York: 2006 1b Stahl SS. Alsters PL. Liquid Phase Aerobic Oxidation Catalysis . Wiley-VCH; Weinheim, Germany: 2016 2a Anelli PL. Biffi C. Montanari F. Quici S. J. Org. Chem. 1987; 52: 2559 2b Sheldon RA. Arends IW. C. E. Adv. Synth. Catal. 2004; 346: 1051 2c Shibuya M. Tomizawa M. Suzuki I. Iwabichi Y. J. Am. Chem. Soc. 2006; 128: 8412 2d Janssen MH. A. Chesa Castellana JF. Jackman H. Dunn PJ. Sheldon RA. Green Chem. 2011; 13: 905 3a Okada T. Asawa T. Sugiyama Y. Kirihara M. Iwai T. Kimura Y. Synlett 2014; 25: 596 3b Okada T. Matsumuro H. Iwai T. Kitagawa S. Yamazaki K. Akiyama T. Asawa T. Sugiyama Y. Kimura Y. Kirihara M. Chem. Lett. 2015; 44: 185 3c Okada T. Asawa T. Sugiyama Y. Iwai T. Kirihara M. Kimura Y. Tetrahedron 2016; 72: 2818 3d Kirihara M. Okada T. Sugiyama Y. Akiyoshi M. Matsunaga T. Kimura Y. Org. Process Res. Dev. 2017; 21: 1925 4 Hirashita T. Nakanishi M. Uchida T. Yamamoto M. Araki S. Arends IW. C. E. Sheldon RA. ChemCatChem 2016; 8: 2704 5a Stevens RV. Chapman KT. Weller HN. J. Org. Chem. 1980; 45: 2030 5b Stevens RV. Chapman KT. Stubbs CA. Tam WW. Albizati KF. Tetrahedron Lett. 1982; 23: 4647 6 Fukuda N. Kajiwara T. Katou T. Majima K. Ikemoto T. Synlett 2013; 24: 1438 7 Oxidation of 2-Octanol; Typical Procedure (entry 10, Table 2): To a suspension of NaOCl·5H2O crystals (123 mg, 0.75 mmol) in acetonitrile (5.0 mL), was added 2-octanol (65 mg, 0.50 mmol), and the resulting mixture was stirred at 20 °C. Aliquots were analyzed at intervals by GC after passing through a short SiO2 column (eluting with EtOAc/hexane, 9:1). The reaction was stopped after 1 h by quenching with Na2SO3 (94 mg, 0.75 mmol) and the mixture was diluted with CH2Cl2 (10 mL). The yield of 2-octanone (tR : 2.1 min) and the recovery of 2-octanol (tR : 2.8 min) were determined to be 91% and 2%, respectively, by GC analysis based on a calibration curve using authentic samples. 8 Oxidation of 1,5-hexanediol (Scheme 3): To a suspension of NaOCl·5H2O crystals (123 mg, 0.75 mmol) in acetonitrile (5.0 mL), was added 1,5-hexanediol (59 mg, 0.50 mmol), and the resulting mixture was stirred at 20 °C. The reaction was stopped after 1 h by quenching with Na2SO3 (95 mg, 0.75 mmol). The product was analyzed by 1H NMR and found to be 6-hydroxyhexane-2-one (31%, δ = 2.49 ppm, 2 H) and 1,5-hexanediol (49% recovery, δ = 1.20 ppm, 3 H) based on a standard material (triphenylmethane δ = 5.55 ppm, 1 H). Zusatzmaterial Zusatzmaterial Supporting Information (PDF)