Synlett 2018; 29(20): 2717-2721
DOI: 10.1055/s-0037-1611276
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 8-Oxabicyclo[3.2.1]octanes by TiCl4-Mediated Reactions of 3-Alkoxycyclobutanones and Allenylsilanes

Tatsuo Onnagawa
,
Mizuki Yamazaki
,
Tomoyuki Yoshimura
,
Jun-ichi Matsuo*
Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan   Email: jimatsuo@p.kanazawa-u.ac.jp
› Author Affiliations
This work was supported by JSPS KAKENHI Grant Number 15K07855 and Kanazawa University SAKIGAKE project.
Further Information

Publication History

Received: 27 August 2018

Accepted after revision: 02 October 2018

Publication Date:
29 October 2018 (online)


Abstract

1-Substituted allenylsilanes reacted with 3-alkoxycyclobutanones in the presence of TiCl4 to afford 8-oxabicyclo[3.2.1]octan-3-ones stereoselectively. Nucleophilic attack of allenylsilanes to a 1,4-zwitterionic intermediate formed from 3-alkoxycyclobutanones and TiCl4­ followed by 1,2-silyl migration, five-membered cyclization with an alkoxy group, and seven-membered cyclization of titanium enolate was proposed. Deuteration and one-pot Peterson olefination suggested that alkyl titanium species were formed after cyclization to 8-oxabi­cyclo[3.2.1]octane skeletons.

Supporting Information

 
  • References and Notes

    • 1a Danheiser RL, Carini DJ. J. Org. Chem. 1980; 45: 3925
    • 1b Buckle MJ, Fleming I. Tetrahedron Lett. 1993; 34: 2383
    • 1c Marshall JA, Maxson K. J. Org. Chem. 2000; 65: 630
    • 1d Felzmann W, Castagnolo D, Rosenbeiger D, Mulzer J. J. Org. Chem. 2007; 72: 2182
    • 1e Brawn RA, Welzel M, Lowe JT, Panek JS. Org. Lett. 2010; 12: 336
  • 2 Yadav VK, Sriramurthy V. Org. Lett. 2004; 6: 4495
  • 3 Reversed selectivity: Denmark SE, Gomez L. Heterocycles 2002; 58: 129
  • 4 Photocycloaddition: Shepard MS, Carreira EM. J. Am. Chem. Soc. 1997; 119: 2597
    • 5a Danheiser RL, Carini DJ, Basak A. J. Am. Chem. Soc. 1981; 103: 1604
    • 5b Danheiser RL, Carini DJ, Fink DM, Basak A. Tetrahedron 1983; 39: 935
    • 5c Danheiser RL, Kwasigroch CA, Tsai YM. J. Am. Chem. Soc. 1985; 107: 7233
    • 5d Danheiser RL, Fink DM. Tetrahedron Lett. 1985; 26: 2513
    • 5e Danheiser RL, Stoner EJ, Koyama H, Yamashita DS, Klade CA. J. Am. Chem. Soc. 1989; 111: 4407
  • 6 Matsuo J. Tetrahedron Lett. 2014; 55: 2589
    • 7a Matsuo J, Sasaki S, Tanaka H, Ishibashi H. J. Am. Chem. Soc. 2008; 130: 11600
    • 7b Negishi S, Ishibashi H, Matsuo J. Org. Lett. 2010; 12: 4984
    • 8a Matsuo J, Okado R, Ishibashi H. Org. Lett. 2010; 12: 3266
    • 8b Onnagawa T, Shima Y, Yoshimura T, Matsuo J. Tetrahedron Lett. 2016; 57: 3050
    • 9a Matsuo J, Sasaki S, Hoshikawa T, Ishibashi H. Org. Lett. 2009; 11: 3822
    • 9b Matsuo J, Sasaki S, Hoshikawa T, Ishibashi H. Chem. Commun. 2010; 46: 934
    • 9c Matsuo J, Negishi S, Ishibashi H. Tetrahedron Lett. 2009; 50: 5831
    • 9d Kawano M, Kiuchi T, Negishi S, Tanaka H, Hoshikawa T, Matsuo J, Ishibashi H. Angew. Chem. Int. Ed. 2013; 52: 906
  • 10 Kuzuguchi T, Yabuuchi Y, Yoshimura T, Matsuo J. Org. Biomol. Chem. 2017; 15: 5268
  • 11 Shima Y, Matsuo J. Tetrahedron Lett. 2016; 57: 4066
  • 12 Shima Y, Igarashi E, Yoshimura T, Matsuo J. Synlett 2018; 29: 723
  • 13 Molander GA, Carey JS. J. Org. Chem. 1995; 60: 4845
    • 14a Lautens M. Synlett 1993; 177
    • 14b Lautens M. Pure Appl. Chem. 1992; 64: 1873
    • 14c Molander GA, Swallow S. J. Org. Chem. 1994; 59: 7148
    • 15a Harmata M, Rashatasakhon P. Tetrahedron 2003; 59: 2371
    • 15b Hoffmann HM. R. Angew. Chem., Int. Ed. Engl. 1973; 12: 819
    • 15c Noyori R. Acc. Chem. Res. 1979; 12: 61
    • 15d Mann J. Tetrahedron 1986; 42: 4611
    • 15e Murray DH, Albizati KF. Tetrahedron Lett. 1990; 31: 4109
    • 15f Stark CB. W, Eggert U, Hoffmann HM. R. Angew. Chem. Int. Ed. 1998; 37: 1266
    • 15g Stark CB. W, Pierau S, Wartchow R, Hoffmann HM. R. Chem. Eur. J. 2000; 6: 684
    • 16a Brownbridge P, Chan T.-H. Tetrahedron Lett. 1979; 4437
    • 16b Molander GA, Eastwood PR. J. Org. Chem. 1995; 60: 8382
    • 16c Molander GA, Cameron KO. J. Am. Chem. Soc. 1993; 115: 830
    • 16d Molander GA, Cameron KO. J. Org. Chem. 1991; 56: 2617

      Reviews:
    • 17a Ylijoki KE. O, Stryker JM. Chem. Rev. 2013; 113: 2244
    • 17b Singh V, Krishna UM, Vikrant, Trivedi GK. Tetrahedron 2008; 64: 3405
    • 17c Pellissier H. Adv. Synth. Catal. 2011; 353: 189

      Recent enantioselective reactions:
    • 18a Witten MR, Jacobsen EN. Angew. Chem. Int. Ed. 2014; 53: 5912
    • 18b Orue A, Uria U, Reyes E, Carrillo L, Vicario JL. Angew. Chem. Int. Ed. 2015; 54: 3043
    • 19a Kusama H, Ishida K, Funami H, Iwasawa N. Angew. Chem. Int. Ed. 2008; 47: 4903
    • 19b Kitagaki S, Anada M, Kataoka O, Matsuno K, Umeda C, Watanabe N, Hashimoto S.-i. J. Am. Chem. Soc. 1999; 121: 1417
    • 19c Hodgson DM, Labande AH, Pierard FY. T. M, Exposito Castro MA. J. Org. Chem. 2003; 68: 6153
    • 19d Ishida K, Kusama H, Iwasawa N. J. Am. Chem. Soc. 2010; 132: 8842
  • 20 Snider BB, Rodini DJ, Karras M, Kirk TC, Deutsch EA, Cordova R, Price RT. Tetrahedron 1981; 37: 3927
    • 21a Miura K, Okajima S, Hondo T, Hosomi A. Tetrahedron Lett. 1995; 36: 1483
    • 21b Miura K, Hondo T, Okajima S, Hosomi A. Tetrahedron Lett. 1996; 37: 487
    • 21c Miura K, Hondo T, Saito H, Ito H, Hosomi A. J. Org. Chem. 1997; 62: 8292
    • 21d Miura K, Okajima S, Hondo T, Nakagawa T, Takahashi T, Hosomi A. J. Am. Chem. Soc. 2000; 122: 11348
    • 21e Miura K, Takahashi T, Nishikori H, Hosomi A. Chem. Lett. 2001; 958
    • 21f Miura K, Takahashi T, Hondo T, Hosomi A. Chirality 2003; 15: 41
    • 22a Ager DJ. Org. React. 1990; 38: 1
    • 22b van Staden LF, Gravestock D, Ager DJ. Chem. Soc. Rev. 2002; 31: 195
    • 23a de Moreira I, Bofill JM, Anglada JM, Solsona JG, Nebot J, Romea P, Urpi F. J. Am. Chem. Soc. 2008; 130: 3242
    • 23b Beaumont S, Ilardi EA, Monroe LR, Zakarian A. J. Am. Chem. Soc. 2010; 132: 1482
    • 23c Mabe PJ, Zakarian A. Org. Lett. 2014; 16: 516
    • 24a Kitagawa O, Suzuki T, Inoue T, Taguchi T. Tetrahedron Lett. 1998; 39: 7357
    • 24b Kitagawa O, Suzuki T, Inoue T, Watanabe Y, Taguchi T. J. Org. Chem. 1998; 63: 9470
  • 25 Formation of a TiCl4-alkene π-complex can be considered for cyclization of a titanium enolate. See: RajanBabu TV, Nugent WA. J. Am. Chem. Soc. 1994; 116: 986
  • 26 Treatment of dihydrofuran 10a with TiCl4–Et3N did not give 9a presumably due to formation of a titanium enolate at the other α-position.
    • 27a RajanBabu TV, Nugent WA. J. Am. Chem. Soc. 1994; 116: 986
    • 27b Herman DF, Nelson WK. J. Am. Chem. Soc. 1953; 75: 3877
    • 27c Herman DF, Nelson WK. J. Am. Chem. Soc. 1953; 75: 3882
    • 27d Causse J, Tabacchi R, Jacot-Guillarmod A. Helv. Chim. Acta 1972; 55: 1560
    • 27e Klei E, Telgen JH, Teuben JH. J. Organomet. Chem. 1981; 209: 297
  • 28 Typical Experimental Procedure for TiCl4-Mediated Reaction of Cyclobutanone 5a and Allenylsilane 1a to 8-Oxabi­cyclo[3.2.1]octan-3-one (9a) To a stirred solution of 1a (51.9 mg, 0.18 mmol) and 5a (40.4 mg, 0.28 mmol) in dry toluene (1.0 mL) was added TiCl4 (1.0 M solution in CH2Cl2, 0.28 mL, 0.28 mmol) at –45 °C, and the mixture was stirred for 2 h at the same temperature. The reaction was quenched by adding aqueous solution of potassium sodium (+)-tartrate, and the resulting mixture was extracted with ethyl acetate (three times). The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (6.8 g, hexane/ethyl acetate = 6:1) to afford 9a (48.4 mg, 0.12 mmol, 67%) and 10a (2.2 mg, 5.4 μmol, 3%). Compound 9a: mp 202.5–203.0 °C. 1H NMR (600 MHz, CDCl3): δ = 7.88–7.87 (2 H, m), 7.55 (2 H, d, J = 7.8 Hz), 7.45–7.43 (3 H, m), 7.35 (1 H, t, J = 7.5 Hz), 7.29 (2 H, t, J = 7.5 Hz), 4.80 (1 H, t, J = 6.0 Hz), 2.97 (1 H, ddd, J = 14.7, 6.0, 1.5 Hz), 2.69–2.63 (1 H, m), 2.21 (1 H, d, J = 14.7 Hz), 2.14–2.09 (2 H, m), 1.11 (3 H, s), 1.00 (9 H, s), 0.96 (3 H, s), 0.86 (3 H, s). 13C NMR (150 MHz, CDCl3): δ = 212.9, 136.7, 135.8, 135.5, 132.7, 129.2, 129.1, 127.9, 127.6, 88.5, 74.5, 57.1, 45.3, 36.0, 29.3, 28.0, 22.4, 19.5, 19.3, 18.9. IR (CHCl3): 3072, 3054, 3010, 2967, 2933, 2859, 1706, 1589, 1469, 1427, 1392, 1272, 1105, 1035 cm–1. HRMS (DART+): m/z [M + H]+ calcd for C26H35O2Si: 407.24063; found: 407.24038. Compound 10a: 1H NMR (600 MHz, CDCl3): δ = 7.62–7.60 (4 H, m), 7.39–7.33 (6 H, m), 4.99–4.94 (1 H, m), 3.19 (1 H, ddq, J = 15.0, 9.6, 1.8 Hz), 3.02 (1 H, dd, J = 16.8, 6.6 Hz), 2.72 (1 H, dd, J = 15.0, 6.3 Hz), 2.68–2.61 (1 H, m), 2.55 (1 H, ddq, J = 16.8, 7.4, 1.8 Hz), 1.31 (3 H, t, J = 1.5 Hz), 1.13 (3 H, d, J = 1.2 Hz), 1.12 (3 H, d, J = 1.8 Hz), 1.07 (9 H, s). 13C NMR (150 MHz, CDCl3): δ = 212.5, 163.6, 136.0, 135.9, 135.5, 135.3, 129.0, 127.6, 94.3, 76.5, 46.5, 42.4, 41.4, 29.7, 28.1, 18.9, 18.0, 17.9, 15.3. IR (CHCl3): 3072, 3018, 2965, 2931, 2857, 1708, 1623, 1469, 1427, 1261, 1209, 1103 cm–1. HRMS (DART+): m/z [M + H]+ calcd for C26H35O2Si: 407.24063; found: 407.24053.