Thromb Haemost 2002; 87(02): 329-333
DOI: 10.1055/s-0037-1612994
Letters to the Editor
Schattauer GmbH

Molecular Modeling of the Seven Tandem Leucine-Rich Repeats within the Ligand-Binding Region of Platelet Glycoprotein Ibα

James C. Whisstock
1   The Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
,
Yang Shen
1   The Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
2   Hazel and Pip Appel Vascular Biology Laboratory, Baker Medical Research Institute, Melbourne, Australia
,
José A. López
3   Department of Medicine and Department of Molecular and Human Genetics, Baylor College of Medicine
4   Veterans Affairs Medical Center, Houston, Texas, USA
,
Robert K. Andrews
1   The Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
2   Hazel and Pip Appel Vascular Biology Laboratory, Baker Medical Research Institute, Melbourne, Australia
,
Michael C. Berndt
1   The Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
2   Hazel and Pip Appel Vascular Biology Laboratory, Baker Medical Research Institute, Melbourne, Australia
3   Department of Medicine and Department of Molecular and Human Genetics, Baylor College of Medicine
› Author Affiliations
Further Information

Publication History

Received 26 June 2001

Accepted after revision 15 October 2001

Publication Date:
13 December 2017 (online)

Summary

Platelet glycoprotein (GP)Ib-IX-V mediates von Willebrand Factor (vWF)-dependent adhesion to vascular subendothelium at high shear in (patho)physiological thrombus formation. The ligand-binding domain of GPIb-IX-V is within the N-terminal 282 residues of GPIbα, that contains seven tandem leucine-rich repeats (Leu36–Ala200). Repeats 2–4 are critical for vWF binding. In this study, we have built molecular models of the seven leucine-rich repeats of human, canine and mouse GPIbα, providing novel insights into the species-specific interaction between human vWF and its receptor. Interestingly, a major difference between the models was a large negatively charged patch on the concave face of human, but not canine, repeats 2–4. In addition, five individual mutations within the leucine-rich repeats of GPIbα associated with the bleeding disorder Bernard-Soulier syndrome, that result in dysfunctional vWF binding, were mapped to the model of human GPIbα. This provides the basis for relating these genetic lesions to abnormal function of the receptor.

 
  • References

  • 1 López JA. The platelet glycoprotein Ib-IX complex. Blood Coagul Fibrinol 1994; 05: 97-119.
  • 2 Berndt MC, Shen Y, Dopheide SM, Gardiner EE, Andrews RK. The vascular biology of the glycoprotein Ib-IX-V complex. Thromb Haemost 2001; 86: 178-88.
  • 3 Kroll MH, Hellums JD, McIntire LV, Schafer AI, Moake JL. Platelets and shear stress. Blood 1996; 88: 1525-41.
  • 4 Savage B, Almus-Jacobs F, Ruggeri ZM. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 1998; 94: 657-66.
  • 5 Romo GM, Dong J-F, Schade AJ, Gardiner EE, Kansas GS, Li CQ, McIntire LV, Berndt MC, López JA. The glycoprotein Ib-IX-V complex is a platelet counterreceptor for P-selectin. J Exp Med 1999; 190: 803-14.
  • 6 Simon DI, Chen Z, Xu H, Li CQ, Dong J-F, McIntire LV, Ballantyne CM, Zhang L, Furman MI, Berndt MC, López JA. Platelet glycoprotein Ibα is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Exp Med 2000; 192: 193-204.
  • 7 Kajava AV. Structural diversity of leucine-rich repeat proteins. J Mol Biol 1998; 277: 519-27.
  • 8 Kobe B, Deisenhofer J. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 1995; 374: 183-6.
  • 9 Papageorgiou AC, Shapiro R, Acharya KR. Molecular recognition of human angiogenin by placental ribonuclease inhibitor – an X-ray crystallographic study at 2.0 Å resolution. EMBO J 1997; 16: 5162-77.
  • 10 Marino M, Braun L, Cossart P, Ghosh P. Structure of the Inlb leucine-rich repeats, a domain that triggers host cell invasion by the bacterial pathogen L. Monocytogenes. Mol Cell 1999; 04: 1063-72.
  • 11 Price SR, Evans PR, Nagai K. Crystal structure of the spliceosomal U2B”-U2A’ protein complex bound to a fragment of U2 small nuclear RNA. Nature 1998; 394: 645-50.
  • 12 Miller JL, Lyle VA, Cunningham D. Mutation of leucine-57 to phenylalanine in a platelet glycoprotein Ibα leucine tandem repeat occurring in patients with an autosomal dominant variant of Bernard-Soulier disease. Blood 1992; 79: 439-46.
  • 13 Ware J, Russell SR, Marchese P, Murata M, Mazzucato M, De Marco L, Ruggeri ZM. Point mutation in a leucine-rich repeat of platelet glycoprotein Ibα resulting in Bernard-Soulier syndrome. J Clin Invest 1993; 92: 1213-20.
  • 14 Shen Y, Romo GM, Dong J-F, Schade A, McIntire LV, Kenny D, Whisstock JC, Berndt MC, López JA, Andrews RK. Requirement of leucine-rich repeats of glycoprotein (GP) Ibα for shear-dependent and static binding of von Willebrand factor to the platelet membrane GP Ib-IX-V complex. Blood 2000; 95: 903-10.
  • 15 Read MS, Shermer RW, Brinkhous KM. Venom coagglutinin: an activator of platelet aggregation dependent on von Willebrand factor. Proc Natl Acad Sci USA 1978; 83: 4514.
  • 16 Andrews RK, Shen Y, Gardiner EE, Berndt MC. Platelet adhesion receptors in (patho)physiological thrombus formation. Histol Histopath 2001; 16: 969-80.
  • 17 Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389-402.
  • 18 Park J, Karplus K, Barrett C, Hughey R, Haussler D, Hubbard T, Chothia C. Sequence comparisons using multiple sequences detect three times as many remote homologues as pairwise methods. J Mol Biol 1998; 284: 1201-10.
  • 19 Bernstein FC, Koetzle TF, Williams GJ, Meyer Jr EE, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M. The protein data bank: a computer-based archival file for macromolecular structures. J Mol Biol 1977; 112: 535-42.
  • 20 Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein data bank. Nucleic Acids Res 2000; 28: 235-42.
  • 21 Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993; 234: 779-815.
  • 22 Lopez JA, Chung DW, Fujikawa K, Hagen FS, Papayannopoulou T, Roth GJ. Cloning of the alpha chain of human platelet glycoprotein Ib: a transmembrane protein with homology to leucine-rich alpha 2-glycoprotein. Proc Natl Acad Sci USA 1987; 84: 5615-9.
  • 23 Kenny D, Morateck PA, Fahs SA, Warltier DC, Montgomery RR. Cloning and expression of canine glycoprotein Ibα. Thromb Haemost 1999; 82: 1327-33.
  • 24 Ware J, Russell S, Ruggeri ZM. Cloning of the murine platelet glycoprotein Ibα gene highlighting species-specific platelet adhesion. Blood Cells Mol Dis 1997; 23: 292-301.
  • 25 Kajava AV, Vassart G, Wodak SJ. Modeling of the three-dimensional structure of proteins with the typical leucine-rich repeats. Structure 1995; 03: 867-77.
  • 26 Kenny D, Jonsson OG, Morateck PA, Montgomery RR. Naturally occurring mutations in glycoprotein Ibα that result in defective ligand binding and synthesis of a truncated protein. Blood 1998; 92: 175-83.
  • 27 Li C, Martin S, Roth G. The genetic defect in two well-studied cases of Bernard-Soulier syndrome: a point mutation in the fifth leucine-rich repeat of platelet glycoprotein Ibα. Blood 1996; 86: 3805-14.
  • 28 de la Salle C, Baas MJ, Lanza F, Schwartz A, Hanau D, Chevalier J, Gachet C, Briquel ME, Cazenave JP. A three-base deletion removing a leucine residue in a leucine-rich repeat of platelet glycoprotein Ibα associated with a variant of Bernard-Soulier syndrome (Nancy I). Br J Haematol 1995; 89: 386-96.
  • 29 Kobe B, Deisenhofer J. Crystal structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats. Nature 1993; 366: 751-6.
  • 30 Hillig RC, Renault L, Vetter IR, Drell 4th T, Wittinghofer A, Becker J. The crystal structure of rna1p: a new fold for a GTPase-activating protein. Mol Cell 1999; 03: 781-91.
  • 31 Matsushita T, Meyer D, Sadler J. Localization of von Willebrand factorbinding sites for platelet glycoprotein Ib and botrocetin by charged-to-alanine scanning mutagenesis. J Biol Chem 2000; 275: 11044-9.
  • 32 López JA, Andrews RK, Afshar-Kharghan V, Berndt MC. Bernard-Soulier syndrome. Blood 1998; 91: 4397-418.
  • 33 Dong J, Schade AJ, Romo GM, Andrews RK, Gao S, McIntire LV, López JA. (2000). Novel gain-of-function mutations of platelet glycoprotein Ibα by valine mutagenesis in the Cys209-Cys248 disulfide loop. Functional analysis under static and dynamic conditions. J Biol Chem 2000; 275: 27663-70.
  • 34 Roth GJ. Developing relationships: arterial platelet adhesion, glycoprotein Ib, and leucine-rich glycoproteins. Blood 1991; 77: 5-19.
  • 35 Burgess JK, Hotchkiss KA, Suter C, Dudman NP, Szollosi J, Chesterman CN, Chong BH, Hogg PJ. Physical proximity and functional association of glycoprotein Ibα and protein-disulfide isomerase on the platelet plasma membrane. J Biol Chem 2000; 275: 9758-66.