Thromb Haemost 2003; 89(01): 9-12
DOI: 10.1055/s-0037-1613536
Review Article
Schattauer GmbH

Antithrombin I. Inhibition of thrombin generation in plasma by fibrin formation

Michael W. Mosesson
1   The Blood Research Institute of the Blood Center of Southeastern Wisconsin, Milwaukee, Wisconsin, USA
› Author Affiliations
Further Information

Publication History

Received 24 September 2002

Accepted after revision 01 November 2002

Publication Date:
09 December 2017 (online)

Summary

Thrombin substrate binding is mediated through fibrinogen recognition “exosite 1” in thrombin, resulting in fibrinopeptide cleavage to form fibrin. In addition, thrombin exhibits “non-substrate” binding to fibrin, an activity termed “Antithrombin I”. Antithrombin I (AT-I) is characterized by two classes of throm-bin binding sites, the first of “low affinity” in the fibrin E domain, and the other of high affinity, that is situated between C-terminal residues 414 and 427 of a variant γ chain termed γ’ 1-427L. Plasma fibrinogen molecules containing γ ’ chains (“fibrino-gen 2”) are virtually all heterodimers containing one γA chain (platelet-binding) and one γ’ chain. The remaining fibrinogen (~ 85%) is homodimeric, lacks high affinity thrombin-binding potential, and is termed “fibrinogen 1” (γAA). Thrombin generation in recalcified fibrinogen-depleted or congenital afibrinogenemic plasma is increased. Repletion with fibrino-gen 1 has a modest effect in normalizing thrombin generation, whereas repletion with fibrinogen 2 (γA/γ’) has a more marked effect. A post-translational γ’ chain derivative, γ’ 1-423P, accounts for 3%-34% of the γ’ chain population, lacks thrombin binding potential, and arises by proteolytic processing at the expense of γ’ 1-427L chains. Little is known about its effect on plasma AT-I activity under normal or pathological circumstances. In summary, fibrin formation (Antithrombin I) inhibits throm-bin generation in clotting blood by sequestering thrombin, and “high-affinity” thrombin-binding (i.e., via γ’ chains) plays a dominant role in this process. AT-1 should be considered when assessing the pathogenesis of thromboembolic disease.

 
  • References

  • 1 Fenton II JW, Olson TA, Zabinski MP, Wilner GD. Anion-binding exosite of human α-thrombin and fibrin(ogen) recognition. Biochemistry 1988; 27: 7106-12.
  • 2 Stubbs MT, Bode W. A player of many parts: The spotlight falls on thrombin’s structure. Thromb Res 1993; 69: 1-58.
  • 3 Seegers WH, Nieft M, Loomis EC. Note on the adsorption of thrombin on fibrin. Science 1945; 101: 520-1.
  • 4 Seegers WH. Multiple protein interactions as exhibited by the blood-clotting mechanism. J Phys Colloid Chem 1947; 51: 198-206.
  • 5 Seegers WH, Johnson JF, Fell C. An anti-thrombin reaction related to prothrombin activation. Am J Physiol 1954; 176: 97-103.
  • 6 Liu CY, Nossel HL, Kaplan KL. Defective thrombin binding by abnormal fibrin associated with recurrent thrombosis. Thromb Haemost 1979; 42: 79 (abs).
  • 7 Meh DA, Siebenlist KR, Mosesson MW. Identification and characterization of the thrombin binding sites on fibrin. J Biol Chem 1996; 271: 23121-5.
  • 8 Mosesson MW, Finlayson JS, Umfleet RA. Human fibrinogen heterogeneities. III. Identification of γ chain variants. J Biol Chem 1972; 247: 5223-7.
  • 9 Wolfenstein-Todel C, Mosesson MW. Carboxy-terminal amino acid sequence of a human fibrinogen γ chain variant (γ’). Biochemistry 1981; 20: 6146-9.
  • 10 Kloczewiak M, Timmons S, Lukas TJ, Hawiger J. Platelet receptor recognition site on human fibrinogen. Synthesis and structure-function relationship of peptides corresponding to the C-terminal segment of the γ chain. Biochemistry 1984; 23: 1767-74.
  • 11 Vali Z, Scheraga HA. Localization of the binding site on fibrin for the secondary binding site of thrombin. Biochemistry 1988; 27: 1956-63.
  • 12 Siebenlist KR, DiOrio JP, Budzynski AZ, Mosesson MW. The polymerization and thrombin-binding properties of des-(B beta 1-42)-fibrin. J Biol Chem 1990; 265: 18650-5.
  • 13 Binnie CG, Lord ST. A synthetic analog of fibrinogen α27-50 is an inhibitor of thrombin. Thromb Haemost 1991; 65: 165-8.
  • 14 Meh DA, Siebenlist KR, Brennan SO, Holyst T, Mosesson MW. The amino acid sequences in fibrin responsible for high affinity throm-bin binding. Thromb Haemost 2001; 85: 470-4.
  • 15 Meh DA, Mosesson MW, Siebenlist KR, Simpson-Haidaris PJ, Brennan SO, DiOrio JP, Thompson K, Di Minno G. Fibrinogen Naples I (Bβ A68T) non-substrate thrombin binding capacities. Thromb Res 2001; 103: 63-73.
  • 16 Koopman J, Haverkate F, Lord ST, Grim-bergen J, Mannucci PM. Molecular basis of fibrinogen Naples associated with defective thrombin binding and thrombophilia. J Clin Invest 1992; 90: 238-44.
  • 17 Farrell DH, Lovely RS, Moaddel M, Stafford AR, Weitz JI. Fibrinogen γ’ chain binds thrombin exosite II. Blood 2000; 96: 448a-9a.
  • 18 Francis CW, Kraus DH, Marder VJ. Structural and chromatographic heterogeneity of normal plasma fibrinogen associated with the presence of three gamma-chain types with distinct molecular weights. Biochim Biophys Acta 1983; 744: 155-64.
  • 19 Francis CW, Keele EM, Marder VJ. Purification of three gamma-chains with different molecular weights from normal human plasma fibrinogen. Biochim Biophys Acta 1984; 797: 328-35.
  • 20 Francis CW, Muller E, Henschen A, Simpson PJ, Marder VJ. Carboxy-terminal amino acid sequences of two large variant forms of the human plasma fibrinogen γ chain. Proc Natl Acad Sci USA 1988; 85: 3358-62.
  • 21 Shariat-Madar Z, Mahdi F, Schmaier AH. Identification and characterization of prolylcarboxypeptidase as an endothelial cell prekallikrein activator. J Biol Chem 2002; 277: 17962-9.
  • 22 Liu CY, Nossel HY, Kaplan KL. The binding of thrombin by fibrin. J Biol Chem 1979; 254: 10421-5.
  • 23 de Bosch NB, Mosesson MW, Ruiz-Sáez A, Echenagucia M, Rodriguez-Lemoin A. Inhibition of thrombin generation in plasma by fibrin formation (Antithrombin I). Thromb Hae-most 2002; 88: 253-8.
  • 24 Kumar R, Béguin S, Hemker C. The influence of fibrinogen and fibrin on thrombin generation-evidence for feedback activation of the clotting system by clot bound thrombin. Thromb Haemost 1994; 72: 713-21.
  • 25 Nossel HL, Ti M, Kaplan KL, Spanondis K, Soland T, Butler Jr VP. The generation of fibrinopeptide A in clinical blood samples. Evidence for thrombin activity. J Clin Invest 1976; 58: 1136-44.
  • 26 Francis CW, Markham RE, Barlow GH, Florack TM, Dobrzynski DM, Marder VJ. Thrombin activity of fibrin thrombi and soluble plasmic derivatives. J Lab Clin Med 1983; 102: 220-30.
  • 27 Owen J, Friedman KD, Grossman BA, Wil-kins C, Berke AD, Powers ER. Thrombolytic therapy with tissue plasminogen activator or streptokinase induces transient thrombin activity. Blood 1988; 72: 616-20.
  • 28 Weitz JI, Hudoba M, Massel D, Maraganore J, Hirsh J. Clot-bound thrombin is protected from inhibition by heparin-antithrombin III but is susceptible to inactivation by antithrombin III-independent inhibitors. J Clin Invest 1990; 86: 385-91.
  • 29 Mutch NJ, Robbie LA, Booth NA. Human thrombi contain an abundance of active thrombin. Thromb Haemost 2001; 86: 1028-34.
  • 30 Di Minno G, Martinez J, Cirillo F, Cerbone AM, Silver MJ, Colucci M, Margaglione M, Tauro R, Semeraro N, Quattrone A, Mancini M. A role for platelets and thrombin in the juvenile stroke of two siblings with defective thrombin-absorbing capacity of fibrin(ogen). Arterioscl Thromb 1991; 11: 785-96.
  • 31 Caen J, Faur Y, Inceman S, Chassigneux J, Seligmann M, Anagnostopoulos T, Bernard J. Nécrose ischémique bilatérale dans un cas de grande hypofibrinogénémie congénitale. Nouv Rev Fr Hématol 1964; 4: 321-6.
  • 32 Marchal G, Duhamel G, Samama M, Flandrin G. Thrombose massive des vaisseaux d’un membre au cours d’une hypofibrinémie con-génitale. Hémostase 1964; 4: 81-9.
  • 33 Nilsson IM, Niléhn J-E, Cronberg S, Nordén G. Hypofibrinogenemia and massive thrombosis. Acta Medica Scandinavica 1966; 180: 65-76.
  • 34 Ingram GI, McBrien DJ, Spencer H. Fatal pulmonary embolism in congenital fibrinopenia. Acta Haematol 1966; 35: 56-62.
  • 35 Mackinnon HH, Fekete JF. Congenital afibrinogenemia: vascular changes and multiple thrombosis induced by fibrinogen infusions and contraceptive medication. Can Med Assoc J 1971; 140: 597-9.
  • 36 Cronin C, Fitzpatrick D, Temperly I. Multiple pulmonary emboli in a patient with afibrinogenaemia. Acta Haematol 1988; 7: 53-4.
  • 37 Drai E, Taillan B, Schneider S, Ferrari E, Bayle J, Dujardin P. Thrombose portale révélatrice d’une afibrinogénémie congénitale. La Presse Médicale 1992; 21: 1820-1.
  • 38 Chafa O, Chellali T, Sternberg C, Reghis A, Hamladji RM, Fischer AM. Severe hypofibrinogenemia associated with bilateral ischemic necrosis of toes and fingers. Blood Coagul Fibrinolysis 1995; 6: 549-52.
  • 39 Dupuy E, Soria C, Molho P, Zini J-M, Rosenstingl S, Laurian C, Bruneval P, Tobelem G. Embolized ischemic lesions of toes in an afibrinogenemic patient: possible relevance to in vivo circulating thrombin. Thromb Res 2001; 102: 211-9.
  • 40 de Bosch N, Sáez A, Soria C, Soria J, Echenagucia M. Coagulation profile in afibrinogenemia. Thromb Haemost 1997. Suppl: 625 (abs).
  • 41 Korte W, Feldges A. Increased prothrombin activation in a patient with congenital afibrinogenemia is reversible by fibrinogen substitution. Clin Invest 1994; 72: 396-8.
  • 42 Ni H, Denis CV, Subbarao S, Degen JL, Sato TN, Hynes RO, Wagner DD. Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J Clin Invest 2000; 106: 385-92.
  • 43 Yang Z, Mochalkin I, Doolittle RF. A model of fibrin formation based on crystal structures of fibrinogen and fibrin fragments complexed with synthetic peptides. Proc Natl Acad Sci USA 2000; 97: 14156-61.