J Knee Surg 2018; 31(09): 866-874
DOI: 10.1055/s-0037-1615813
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Bone-Patellar Tendon-Bone Autograft versus Hamstring Tendon Autograft for Anatomical Anterior Cruciate Ligament Reconstruction with Three-Dimensional Validation of Femoral and Tibial Tunnel Positions

Shuji Taketomi
1   Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
,
Hiroshi Inui
1   Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
,
Ryota Yamagami
1   Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
,
Nobuyuki Shirakawa
1   Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
,
Kohei Kawaguchi
1   Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
,
Takumi Nakagawa
2   Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan
,
Sakae Tanaka
1   Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
› Author Affiliations
Further Information

Publication History

08 June 2017

22 November 2017

Publication Date:
28 December 2017 (online)

Abstract

The purpose of this retrospective study was to first compare the clinical outcome of anatomical double-bundle (DB) anterior cruciate ligament reconstruction (ACLR) with hamstring tendon (HT) autografts and anatomical rectangular tunnel ACLR with bone-patellar tendon-bone (BPTB) autografts. Secondly, we aimed to demonstrate the quantitative locations of the femoral and tibial tunnel apertures using postoperative three-dimensional computed tomography (3D CT). Twenty-five patients underwent anatomical rectangular tunnel ACLR using BPTB grafts (Group B) and 23 patients underwent anatomical DB ACLR using HT grafts (Group H). All patients underwent subjective postoperative evaluations using the Lysholm score and Knee Injury and Osteoarthritis Outcome Score. Patients also underwent objective evaluations by the International Knee Documentation Committee score, the Lachman test, the pivot-shift test, and range of motion. In addition, we quantitatively assessed anterior knee stability using a KneeLax3 arthrometer and thigh strength. All evaluations except for thigh strength were assessed for a minimum 2 years of follow-up period. Femoral and tibial tunnel aperture locations were quantitatively evaluated postoperatively using 3D CT images in all patients. BPTB grafts showed significantly better anterior knee stability than HT grafts (0.1 mm versus 1.1 mm, p = 0.01), although there were no significant differences in other objective and all subjective evaluations between the two graft types. Morphometric analysis of femoral and tibial tunnel locations revealed that the two procedures were based on the same anatomical concept. In conclusion, BPTB grafts showed significantly better anterior knee stability than HT grafts, although no significant differences in other objective evaluations and all subjective evaluations were detected between the two graft types in anatomical ACLR. Additional 3D CT data validated the anatomical concepts of these two procedures.

 
  • References

  • 1 Tomita F, Yasuda K, Mikami S, Sakai T, Yamazaki S, Tohyama H. Comparisons of intraosseous graft healing between the doubled flexor tendon graft and the bone-patellar tendon-bone graft in anterior cruciate ligament reconstruction. Arthroscopy 2001; 17 (05) 461-476
  • 2 Reinhardt KR, Hetsroni I, Marx RG. Graft selection for anterior cruciate ligament reconstruction: a level I systematic review comparing failure rates and functional outcomes. Orthop Clin North Am 2010; 41 (02) 249-262
  • 3 Blythe A, Tasker T, Zioupos P. ACL graft constructs: in-vitro fatigue testing highlights the occurrence of irrecoverable lengthening and the need for adequate (pre)conditioning to avert the recurrence of knee instability. Technol Health Care 2006; 14 (4-5): 335-347
  • 4 Taketomi S, Inui H, Sanada T, Yamagami R, Tanaka S, Nakagawa T. Eccentric femoral tunnel widening in anatomic anterior cruciate ligament reconstruction. Arthroscopy 2014; 30 (06) 701-709
  • 5 Mohtadi NG, Chan DS, Dainty KN, Whelan DB. Patellar tendon versus hamstring tendon autograft for anterior cruciate ligament rupture in adults. Cochrane Database Syst Rev 2011; (09) CD005960
  • 6 Gobbi A, Mahajan S, Zanazzo M, Tuy B. Patellar tendon versus quadrupled bone-semitendinosus anterior cruciate ligament reconstruction: a prospective clinical investigation in athletes. Arthroscopy 2003; 19 (06) 592-601
  • 7 Aglietti P, Giron F, Buzzi R, Biddau F, Sasso F. Anterior cruciate ligament reconstruction: bone-patellar tendon-bone compared with double semitendinosus and gracilis tendon grafts. A prospective, randomized clinical trial. J Bone Joint Surg Am 2004; 86-A (10) 2143-2155
  • 8 Chee MY, Chen Y, Pearce CJ. , et al. Outcome of patellar tendon versus 4-strand hamstring tendon autografts for anterior cruciate ligament reconstruction: a systematic review and meta-analysis of prospective randomized trials. Arthroscopy 2017; 33 (02) 450-463
  • 9 Biau DJ, Katsahian S, Kartus J. , et al. Patellar tendon versus hamstring tendon autografts for reconstructing the anterior cruciate ligament: a meta-analysis based on individual patient data. Am J Sports Med 2009; 37 (12) 2470-2478
  • 10 Lidén M, Ejerhed L, Sernert N, Laxdal G, Kartus J. Patellar tendon or semitendinosus tendon autografts for anterior cruciate ligament reconstruction: a prospective, randomized study with a 7-Year follow-up. Am J Sports Med 2007; 35 (05) 740-748
  • 11 Beynnon BD, Johnson RJ, Fleming BC. , et al. Anterior cruciate ligament replacement: comparison of bone-patellar tendon-bone grafts with two-strand hamstring grafts. A prospective, randomized study. J Bone Joint Surg Am 2002; 84-A (09) 1503-1513
  • 12 Mascarenhas R, Tranovich MJ, Kropf EJ, Fu FH, Harner CD. Bone-patellar tendon-bone autograft versus hamstring autograft anterior cruciate ligament reconstruction in the young athlete: a retrospective matched analysis with 2-10.  year follow-up. Knee Surg Sports Traumatol Arthrosc 2012; 20 (08) 1520-1527
  • 13 Gifstad T, Sole A, Strand T, Uppheim G, Grøntvedt T, Drogset JO. Long-term follow-up of patellar tendon grafts or hamstring tendon grafts in endoscopic ACL reconstructions. Knee Surg Sports Traumatol Arthrosc 2013; 21 (03) 576-583
  • 14 Shino K, Suzuki T, Iwahashi T. , et al. The resident's ridge as an arthroscopic landmark for anatomical femoral tunnel drilling in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2010; 18 (09) 1164-1168
  • 15 Musahl V, Plakseychuk A, VanScyoc A. , et al. Varying femoral tunnels between the anatomical footprint and isometric positions: effect on kinematics of the anterior cruciate ligament-reconstructed knee. Am J Sports Med 2005; 33 (05) 712-718
  • 16 Yagi M, Kuroda R, Nagamune K, Yoshiya S, Kurosaka M. Double-bundle ACL reconstruction can improve rotational stability. Clin Orthop Relat Res 2007; 454 (454) 100-107
  • 17 Lim HC, Yoon YC, Wang JH, Bae JH. Anatomical versus non-anatomical single bundle anterior cruciate ligament reconstruction: a cadaveric study of comparison of knee stability. Clin Orthop Surg 2012; 4 (04) 249-255
  • 18 Kondo E, Yasuda K, Azuma H, Tanabe Y, Yagi T. Prospective clinical comparisons of anatomic double-bundle versus single-bundle anterior cruciate ligament reconstruction procedures in 328 consecutive patients. Am J Sports Med 2008; 36 (09) 1675-1687
  • 19 Muneta T, Koga H, Mochizuki T. , et al. A prospective randomized study of 4-strand semitendinosus tendon anterior cruciate ligament reconstruction comparing single-bundle and double-bundle techniques. Arthroscopy 2007; 23 (06) 618-628
  • 20 Siebold R, Dehler C, Ellert T. Prospective randomized comparison of double-bundle versus single-bundle anterior cruciate ligament reconstruction. Arthroscopy 2008; 24 (02) 137-145
  • 21 Taketomi S, Inui H, Nakamura K. , et al. Clinical outcome of anatomic double-bundle ACL reconstruction and 3D CT model-based validation of femoral socket aperture position. Knee Surg Sports Traumatol Arthrosc 2014; 22 (09) 2194-2201
  • 22 Shino K, Nakata K, Nakamura N. , et al. Rectangular tunnel double-bundle anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft to mimic natural fiber arrangement. Arthroscopy 2008; 24 (10) 1178-1183
  • 23 Kopf S, Forsythe B, Wong AK, Tashman S, Irrgang JJ, Fu FH. Transtibial ACL reconstruction technique fails to position drill tunnels anatomically in vivo 3D CT study. Knee Surg Sports Traumatol Arthrosc 2012; 20 (11) 2200-2207
  • 24 Forsythe B, Kopf S, Wong AK. , et al. The location of femoral and tibial tunnels in anatomic double-bundle anterior cruciate ligament reconstruction analyzed by three-dimensional computed tomography models. J Bone Joint Surg Am 2010; 92 (06) 1418-1426
  • 25 Sasaki S, Tsuda E, Hiraga Y. , et al. Prospective randomized study of objective and subjective clinical results between double-bundle and single-bundle anterior cruciate ligament reconstruction. Am J Sports Med 2016; 44 (04) 855-864
  • 26 Nakagawa T, Takeda H, Nakajima K. , et al. Intraoperative 3-dimensional imaging-based navigation-assisted anatomic double-bundle anterior cruciate ligament reconstruction. Arthroscopy 2008; 24 (10) 1161-1167
  • 27 Shino K, Horibe S, Hamada M. , et al. Allograft anterior cruciate ligament reconstruction. Tech Knee Surg 2002; 1 (02) 78-85
  • 28 Ferretti M, Doca D, Ingham SM, Cohen M, Fu FH. Bony and soft tissue landmarks of the ACL tibial insertion site: an anatomical study. Knee Surg Sports Traumatol Arthrosc 2012; 20 (01) 62-68
  • 29 Taketomi S, Inui H, Nakamura K. , et al. Secure fixation of femoral bone plug with a suspensory button in anatomical anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft. Joints 2016; 3 (03) 102-108
  • 30 Bernard M, Hertel P, Hornung H, Cierpinski T. Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 1997; 10 (01) 14-21 , discussion 21–22
  • 31 Lysholm J, Gillquist J. Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med 1982; 10 (03) 150-154
  • 32 Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD. Knee Injury and Osteoarthritis Outcome Score (KOOS)--development of a self-administered outcome measure. J Orthop Sports Phys Ther 1998; 28 (02) 88-96
  • 33 Nakamura N, Takeuchi R, Sawaguchi T, Ishikawa H, Saito T, Goldhahn S. Cross-cultural adaptation and validation of the Japanese Knee Injury and Osteoarthritis Outcome Score (KOOS). J Orthop Sci 2011; 16 (05) 516-523
  • 34 Irrgang JJ, Anderson AF, Boland AL. , et al. Development and validation of the International Knee Documentation Committee subjective knee form. Am J Sports Med 2001; 29 (05) 600-613
  • 35 Galway HR, MacIntosh DL. The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency. Clin Orthop Relat Res 1980; (147) 45-50
  • 36 Brophy RH, Voos JE, Shannon FJ. , et al. Changes in the length of virtual anterior cruciate ligament fibers during stability testing: a comparison of conventional single-bundle reconstruction and native anterior cruciate ligament. Am J Sports Med 2008; 36 (11) 2196-2203
  • 37 Spindler KP, Parker RD, Andrish JT. , et al; MOON Group. Prognosis and predictors of ACL reconstructions using the MOON cohort: a model for comparative effectiveness studies. J Orthop Res 2013; 31 (01) 2-9
  • 38 Muller B, Yabroudi MA, Lynch A. , et al. Defining thresholds for the patient acceptable symptom state for the IKDC Subjective Knee Form and KOOS for patients who underwent ACL reconstruction. Am J Sports Med 2016; 44 (11) 2820-2826
  • 39 Tsukada H, Ishibashi Y, Tsuda E, Fukuda A, Toh S. Anatomical analysis of the anterior cruciate ligament femoral and tibial footprints. J Orthop Sci 2008; 13 (02) 122-129
  • 40 Lorenz S, Elser F, Mitterer M, Obst T, Imhoff AB. Radiologic evaluation of the insertion sites of the 2 functional bundles of the anterior cruciate ligament using 3-dimensional computed tomography. Am J Sports Med 2009; 37 (12) 2368-2376
  • 41 Iriuchishima T, Ingham SJ, Tajima G. , et al. Evaluation of the tunnel placement in the anatomical double-bundle ACL reconstruction: a cadaver study. Knee Surg Sports Traumatol Arthrosc 2010; 18 (09) 1226-1231
  • 42 Lee JK, Lee S, Seong SC, Lee MC. Anatomy of the anterior cruciate ligament insertion sites: comparison of plain radiography and three-dimensional computed tomographic imaging to anatomic dissection. Knee Surg Sports Traumatol Arthrosc 2015; 23 (08) 2297-2305
  • 43 Hoser C, Tecklenburg K, Kuenzel KH, Fink C. Postoperative evaluation of femoral tunnel position in ACL reconstruction: plain radiography versus computed tomography. Knee Surg Sports Traumatol Arthrosc 2005; 13 (04) 256-262
  • 44 Lertwanich P, Martins CA, Asai S, Ingham SJ, Smolinski P, Fu FH. Anterior cruciate ligament tunnel position measurement reliability on 3-dimensional reconstructed computed tomography. Arthroscopy 2011; 27 (03) 391-398
  • 45 Kim DH, Lim WB, Cho SW, Lim CW, Jo S. Reliability of 3-dimensional computed tomography for application of the Bernard Quadrant Method in femoral tunnel position evaluation after anatomic anterior cruciate ligament reconstruction. Arthroscopy 2016; 32 (08) 1660-1666
  • 46 Koga H, Muneta T, Yagishita K. , et al. Effect of femoral tunnel position on graft tension curves and knee stability in anatomic double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2014; 22 (11) 2811-2820
  • 47 Zantop T, Diermann N, Schumacher T, Schanz S, Fu FH, Petersen W. Anatomical and nonanatomical double-bundle anterior cruciate ligament reconstruction: importance of femoral tunnel location on knee kinematics. Am J Sports Med 2008; 36 (04) 678-685
  • 48 Nakajima H, Kondo M, Kurosawa H, Fukubayashi T. Insufficiency of the anterior cruciate ligament. Review of our 118 cases. Arch Orthop Trauma Surg 1979; 95 (04) 233-240
  • 49 Tashiro Y, Okazaki K, Miura H. , et al. Quantitative assessment of rotatory instability after anterior cruciate ligament reconstruction. Am J Sports Med 2009; 37 (05) 909-916
  • 50 Kuroda R, Hoshino Y, Araki D. , et al. Quantitative measurement of the pivot shift, reliability, and clinical applications. Knee Surg Sports Traumatol Arthrosc 2012; 20 (04) 686-691