Hamostaseologie 2010; 30(01): 29-38
DOI: 10.1055/s-0037-1617145
Review
Schattauer GmbH

Phenotypic approaches to gene mapping in platelet function disorders

Identification of new variant of P2Y12, TxA2 and GPVI receptorsPhänotypische Ansätze zur Genkartierung bei ThrombozytenfunktionsstörungenIdentifizierung neuer Varianten von P2Y12-, TxA2- und GPVI-Rezeptoren
S. Watson
1   Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, UK
,
M. Daly
2   Department of Cardiovascular Science, The University of Sheffield Medical School, UK
,
B. Dawood
1   Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, UK
,
P. Gissen
1   Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, UK
3   Section of Medical and Molecular Genetics, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, UK
,
M. Makris
2   Department of Cardiovascular Science, The University of Sheffield Medical School, UK
,
S. Mundell
4   Department of Physiology and Pharmacology, School of Medical Sciences, University of Bristol
,
J. Wilde
1   Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, UK
5   Adult Haemophilia Centre, Queen Elizabeth Hospital, Birmingham
,
A. Mumford
6   Bristol Heart Institute, University of Bristol, UK
› Author Affiliations
Further Information

Publication History





Publication Date:
29 December 2017 (online)

Summary

Platelet number or function disorders cause a range of bleeding symptoms from mild to severe. Patients with platelet dysfunction but normal platelet number are the most prevalent and typically have mild bleeding symptoms. The study of this group of patients is particularly difficult because of the lack of a gold-standard test of platelet function and the variable penetrance of the bleeding phenotype among affected individuals.

The purpose of this short review is to discuss the way in which this group of patients can be investigated through platelet phenotyping in combination with targeted gene sequencing. This approach has been used recently to identify patients with mutations in key platelet activation receptors, namely those for ADP, collagen and thromboxane A2 (TxA2). One interesting finding from this work is that for some patients, mild bleeding is associated with heterozygous mutations in platelet proteins that are co-inherited with other genetic disorders of haemostasis such as type 1 von Willebrand‘s disease. Thus, the phenotype of mild bleeding may be multifactorial in some patients and may be considered to be a complex trait.

Zusammenfassung

Störungen der Thrombozytenzahl oder -funktion führen zu einer Reihe von leichten bis schweren Blutungssymptomen. Patienten mit Thrombozytendysfunktion, aber normaler Thrombozytenzahl zeigen die höchste Prävalenz, haben aber üblicherweise nur leichte Blutungen. Die Untersuchung dieser Patientengruppe gestaltet sich besonders schwierig, da kein Goldstandard-Test für die Thrombozytenfunktion existiert und die Penetranz des Blutungsphänotyps bei den Betroffenen individuell variiert.

Mit dieser kurzen Übersicht soll dargestellt werden, wie diese Patientengruppe mittels Thrombozytenphänotypisierung in Kombi-nation mit der Sequenzierung von Zielgenen untersucht werden kann. Dieser Ansatz wurde kürzlich zur Identifizierung von Patienten genutzt, die Mutationen in Schlüsselrezeptoren der Thrombozytenaktivierung aufweisen, nämlich den Rezeptoren für ADP, Kollagen und Thromboxan A2 (TxA2). Ein interessantes Ergebnis ist, dass bei einigen Patienten leichte Blutungen mit heterozygoten Mutationen in Thrombozytenproteinen verbunden sind, die gemeinsam mit anderen genetisch bedingten Hämostasestörungen wie dem von-Willebrand-Jürgens-Syndrom Typ 1 ver -erbt werden. Folglich kann der Phänotyp einer leichten Blutung bei einigen Patienten multi-faktoriell sein und als komplexes Merkmal angesehen werden.

 
  • References

  • 1 Sugiyama T. et al. A novel platelet aggregating factor found in a patient with defective collagen-induced platelet aggregation and autoimmune thrombocytopenia. Blood 1987; 69: 1712-1720.
  • 2 Gibbins JM. et al. Glycoprotein VI is the collagen receptor in platelets which underlies tyrosine phosphorylation of the Fc receptor gamma-chain. FEBS Lett 1997; 413: 255-259.
  • 3 Hollopeter G. et al. Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 2001; 409: 202-207.
  • 4 Blue R. et al. Application of high-throughput screening to identify a novel alpha IIb-specific small-molecule inhibitor of alpha IIb beta 3-mediated platelet interaction with fibrinogen. Blood 2008; 111: 1248-1256.
  • 5 Coller BS, Shattil SJ. The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: a technology-driven saga of a receptor with twists, turns, and even a bend. Blood 2008; 112: 3011-3025.
  • 6 Ghevaert C. et al. A nonsynonymous SNP in the ITGB3 gene disrupts the conserved membrane-proximal cytoplasmic salt bridge in the alphaIIbbeta3 integrin and cosegregates dominantly with abnormal proplatelet formation and macrothrombocytopenia. Blood 2008; 111: 3407-3414.
  • 7 Larson MK, Watson SP. Regulation of proplatelet formation and platelet release by integrin alpha IIb beta3. Blood 2006; 108: 1509-1514.
  • 8 Watkins NA. et al. A HaemAtlas: characterizing gene expression in differentiated human blood cells. Blood 2009; 113: e1-e9.
  • 9 Jones CI. et al. A functional genomics approach reveals novel quantitative trait loci associated with platelet signaling pathways. Blood 2009; 114: 1405-1416.
  • 10 Hassan AA, Kroll MH. Acquired disorders of platelet function. Hematology Am Soc Hematol Educ Program 2005; 403-408.
  • 11 George JN, Shattil SJ. The clinical importance of acquired abnormalities of platelet function. N Engl J Med 1991; 324: 27-39.
  • 12 Bolton-Maggs PH. et al. A review of inherited platelet disorders with guidelines for their management on behalf of the UKHCDO. Br J Haematol 2006; 135: 603-633.
  • 13 Tosetto A. et al. A quantitative analysis of bleeding symptoms in type 1 von Willebrand disease: results from a multicenter European study (MCMDM-1 VWD). J Thromb Haemost 2006; 4: 766-773.
  • 14 McKay H. et al. Bleeding risks associated with inheritance of the Quebec platelet disorder. Blood 2004; 104: 159-165.
  • 15 Bowman M. et al. Evaluation of the diagnostic utility for von Willebrand disease of a pediatric bleeding questionnaire. J Thromb Haemost 2009; 7: 1418-1421.
  • 16 Nurden AT. Glanzmann thrombasthenia. Orphanet J Rare Dis 2006; 1: 10.
  • 17 Lanza F. Bernard-Soulier syndrome (hemorrhagiparous thrombocytic dystrophy). Orphanet J Rare Dis 2006; 1: 46.
  • 18 Huizing M. et al. Disorders of lysosome-related organelle biogenesis: clinical and molecular genetics. Annu Rev Genomics Hum Genet 2008; 9: 359-386.
  • 19 Morgan NV. et al. A germline mutation in BLOC1S3/reduced pigmentation causes a novel variant of Hermansky-Pudlak syndrome (HPS8). Am J Hum Genet 2006; 78: 160-166.
  • 20 Kuijpers TW. et al. LAD-1/variant syndrome is caused by mutations in FERMT3. Blood 2009; 113: 4740-4746.
  • 21 Malinin NL. et al. A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans. Nat Med 2009; 15: 313-318.
  • 22 Mory A. et al. Kindlin-3: a new gene involved in the pathogenesis of LAD-III. Blood 2008; 112: 2591.
  • 23 Svensson L. et al. Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting inte-grin activation. Nat Med 2009; 15: 306-312.
  • 24 Feske S. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 2006; 441: 179-185.
  • 25 Braun A. et al. Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood 2009; 113: 2056-2063.
  • 26 Quek LS, Bolen J, Watson SP. A role for Bruton‘s tyrosine kinase (Btk) in platelet activation by collagen. Curr Biol 1998; 8: 1137-1140.
  • 27 Laffan M. et al. The diagnosis of von Willebrand disease: a guideline from the UK Haemophilia Centre Doctors’ Organization. Haemophilia 2004; 10: 199-217.
  • 28 Hayward CP. et al. Platelet function analyzer (PFA)-100 closure time in the evaluation of platelet disorders and platelet function. J Thromb Haemost 2006; 4: 312-319.
  • 29 Harrison P, Mumford A. Screening tests of platelet function: update on their appropriate uses for diagnostic testing. Semin Thromb Hemost 2009; 35: 150-157.
  • 30 Jennings I. et al. Platelet function testing: practice among UK National External Quality Assessment Scheme for Blood Coagulation participants, 2006. J Clin Pathol 2008; 61: 950-954.
  • 31 Cattaneo M. et al. Results of a worldwide survey on the assessment of platelet function by light transmission aggregometry: a report from the platelet physiology subcommittee of the SSC of the ISTH. J Thromb Haemost 2009; 7: 1029.
  • 32 Hayward CP. et al. An evaluation of methods for determining reference intervals for light transmission platelet aggregation tests on samples with normal or reduced platelet counts. Thromb Haemost 2008; 100: 134-145.
  • 33 Dawood BB, Wilde J, Watson SP. Reference curves for aggregation and ATP secretion to aid diagnose of platelet-based bleeding disorders: effect of inhibition of ADP and thromboxane A(2) pathways. Platelets 2007; 18: 329-345.
  • 34 Hayward CP. et al. Diagnostic utility of light transmission platelet aggregometry: results from a prospective study of individuals referred for bleeding disorder assessments. J Thromb Haemost 2009; 7: 676-684.
  • 35 Quiroga T. et al. Diagnosis of mild platelet function disorders. Reliability and usefulness of light transmission platelet aggregation and serotonin secretion assays. Br J Haematol 2009; 147: 729-736.
  • 36 Miller JL. Glycoprotein analysis for the diagnostic evaluation of platelet disorders. Semin Thromb Hemost 2009; 35: 224-232.
  • 37 McGlasson DL, Fritsma GA. Whole blood platelet aggregometry and platelet function testing. Semin Thromb Hemost 2009; 35: 168-180.
  • 38 Clauser S, Cramer-Borde E. Role of platelet electron microscopy in the diagnosis of platelet disorders. Semin Thromb Hemost 2009; 35: 213-223.
  • 39 Snell DC. et al. Differential effects of reduced glyco-protein VI levels on activation of murine platelets by glycoprotein VI ligands. Biochem J 2002; 368: 293-300.
  • 40 Dawood B. et al. Identification of a novel homo-zygous P2Y12 mutation in a patient with a mild platelet-based bleeding disorder. J Thromb Haemost. 2009 5 PP-MO-076.
  • 41 Mumford AD. et al. A novel thromboxane A2 receptor D304N variant which abrogates ligand binding in a patient with a bleeding diathesis. Blood. 2009 (Epub ahead of print).
  • 42 Goodeve A. et al. Phenotype and genotype of a cohort of families historically diagnosed with type 1 von Willebrand disease in the European study, Molecular and Clinical Markers for the Diagnosis and Management of Type 1 von Willebrand Disease (MCMDM-1VWD). Blood 2007; 109: 112-121.
  • 43 Daly ME. et al. Identification of two novel P2Y12 ADP receptor gene defects in patients with type 1 von Willebrand disease. J Thromb Haemost. 2009 5 OC-MO-131.
  • 44 Daly ME. et al. Identification and characterization of a novel P2Y 12 variant in a patient diagnosed with type 1 von Willebrand disease in the European MCMDM-1VWD study. Blood 2009; 113: 4110-4113.
  • 45 Fontana G. et al. Haploinsufficiency of the platelet P2Y12 gene in a family with congenital bleeding diathesis. Haematologica 2009; 94: 581-584.
  • 46 Cattaneo M. et al. Platelets from a patient heterozygous for the defect of P2CYC receptors for ADP have a secretion defect despite normal thromboxane A2 production and normal granule stores: further evidence that some cases of platelet ‘primary secretion defect’ are heterozygous for a defect of P2CYC receptors. Arterioscler Thromb Vasc Biol 2000; 20: E101-E106.
  • 47 Cattaneo M. Inherited platelet-based bleeding disorders. J Thromb Haemost 2003; 1: 1628-1636.
  • 48 Shiraga M. et al. Impaired platelet function in a patient with P2Y12 deficiency caused by a mutation in the translation initiation codon. J Thromb Haemost 2005; 3: 2315-2323.
  • 49 Cattaneo M. et al. Molecular bases of defective signal transduction in the platelet P2Y12 receptor of a patient with congenital bleeding. Proc Natl Acad Sci USA 2003; 100: 1978-1983.
  • 50 Remijn JA. et al. Novel molecular defect in the platelet ADP receptor P2Y12 of a patient with haemorrhagic diathesis. Clin Chem Lab Med 2007; 45: 187-189.
  • 51 Hirata T. et al. Arg60 to Leu mutation of the human thromboxane A2 receptor in a dominantly inherited bleeding disorder. J Clin Invest 1994; 94: 1662-1667.
  • 52 Fuse I. et al. Pathogenetic analysis of five cases with a platelet disorder characterized by the absence of thromboxane A2 (TXA2)-induced platelet aggregation in spite of normal TXA2 binding activity. Thromb Haemost 1996; 76: 1080-1085.
  • 53 Higuchi W. et al. Mutations of the platelet thromboxane A2 (TXA2) receptor in patients characterized by the absence of TXA2-induced platelet aggregation despite normal TXA2 binding activity. Thromb Haemost 1999; 82: 1528-1531.
  • 54 Dumont B. et al. Absence of collagen-induced platelet activation caused by compound heterozygous GPVI mutations. Blood 2009; 114: 1900-1903.
  • 55 Hermans C. et al. A compound heterozygous mutation in glycoprotein VI in a patient with a bleeding disorder. J Thromb Haemost 2009; 7: 1356-1363.