RSS-Feed abonnieren
DOI: 10.1055/s-0037-1618176
Pathogenese des systemischen Lupus erythematodes (SLE) im Kindesalter
Pathogenesis of pediatric systemic lupus erythematosus (SLE)Authors
Publikationsverlauf
Publikationsdatum:
27. Dezember 2017 (online)

Zusammenfassung
Der systemische Lupus erythematodes (SLE) ist eine systemische Autoimmunerkrankung, die jedes Organsystem betreffen kann und deren Erkrankungsgipfel im Erwachsenenalter liegt. Die deutliche Bevorzugung des weiblichen Geschlechts (9–10 : 1) deutet auf hormonelle Einflüsse in der Pathogenese hin. Obwohl seltener als Erwachsene, erkranken auch Kinder und Jugendliche am SLE. Innerhalb der pädiatrischen Altersgruppe fällt eine variable Geschlechterverteilung mit ausgeglichenem Verhältnis vor der Pubertät auf. Danach kommt es zu einer Annäherung an die Erwachsenenverteilung. Die besondere Bedeutung des pädiatrischen SLE liegt im höheren Schweregrad kindlicher Manifestationen mit gesteigerter chronischer Krankheitsaktivität und schlechterer Prognose. Eine Beeinträchtigung der körperlichen Entwicklung kann zum einen aus der chronischen Entzündung und den daraus resultierenden Organschäden, aber auch aus der teils toxischen Therapie resultieren. Die variable Geschlechterverteilung zusammen mit schwereren Verläufen bei jüngeren Patienten wirft die Frage nach unterschiedlichen Pathomechanismen in den verschiedenen Altersgruppen auf. In der vorliegenden Arbeit diskutieren wir anhand der Literatur genetische, hormonelle und Umwelteinflüsse auf die Pathogenese des SLE im Kindes-$$$ und Jugendalter und formulieren ein hypothetisches Modell zur Pathogenese des SLE in den verschiedenen Altersgruppen.
Summary
Systemic lupus erythematosus (SLE) is a systemic autoimmune disorder that can affect any organ of the human body. A peak in disease onset during early adulthood and the female predominance (9–10 : 1) indicate the role of hormonal factors in the pathogenesis of SLE. Though less common when compared to the adult age group, also children can develop SLE. Gender distribution varies in the pediatric age group with equal numbers in the first decade and female predominance thereafter (second decade 4 : 1, then 9–10 : 1). Furthermore, the clinical course in children is more severe with increased chronic disease activity and resulting organ damage. Secondary to these variables in the pediatric age group, the question of whether differential pathomechanisms may be involved in pediatric SLE has been raised. Here, we discuss the contribution of genetic, hormonal and environmental factors in the pathogenesis of SLE in the various age groups.
-
Literatur
- 1 Tsokos GC. Systemic lupus erythematosus. N Engl J Med 2011; 365: 2110-2121.
- 2 Tan EM, Cohen AS, Fries JF. et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1982; 25: 1271-1277.
- 3 Brunner HI, Huggins J, Klein-Gitelman MS. Pediatric SLE--towards a comprehensive management plan Nat. Rev. Rheumatol 2011; 7: 225-233.
- 4 Ardoin SP, Schanberg LE. Paediatric rheumatic disease: lessons from SLE: children are not little adults Nat. Rev. Rheumatol 2012; 8: 444-445.
- 5 Hedrich CM, Zappel H, Straub S. et al. Early onset systemic lupus erythematosus: differential diagnoses, clinical presentation, and treatment options Clin. Rheumatol 2011; 30: 275-283.
- 6 Livingston B, Bonner A, Pope J. Differences in clinical manifestations between childhood-onset lupus and adult-onset lupus: a meta-analysis. Lupus 2011; 20: 1345-1355.
- 7 von Hersh AO, von Scheven E, Yazdany SE. et al. Differences in long-term disease activity and treatment of adult patients with childhood- and adultonset systemic lupus erythematosus. Arthritis Rheum 2009; 61: 13-20.
- 8 Hersh AO, Trupin L, Yazdany J. et al. Childhood-onset disease as a predictor of mortality in an adult cohort of patients with systemic lupus erythematosus. Arthritis Care Res 2010; 62: 1152-1159.
- 9 Zulian F, Pluchinotta F, Martini G. et al. Severe clinical course of systemic lupus erythematosus in the first year of life. Lupus 2008; 17: 780-786.
- 10 Haas JP. Genetic background of juvenile idiopathic arthritis. Z Rheumatol 2010; 69: 488-495.
- 11 Zhu J, Wu F, Huang X. Age-related differences in the clinical characteristics of systemic lupus erythematosus in children. Rheumatol Int 2013; 33: 111-115.
- 12 Hedrich CM, Tsokos GC. Epigenetic mechanisms in systemic lupus erythematosus and other autoimmune diseases. Trends Mol Med 2011; 17: 714-724.
- 13 Roozendaal R, Carroll MC. Complement receptors CD21 and CD35 in humoral immunity. Immunol Rev 2007; 219: 157-166.
- 14 Moser KL, Kelly JA, Lessard CJ, Harley JB. Recent insights into the genetic basis of systemic lupus erythematosus. Genes Immun 2009; 10: 373-379.
- 15 Hauck F, Lee-Kirsch MA, Aust D. et al. Complement C2 deficiency disarranging innate and adaptive humoral immune responses in a pediatric patient: treatment with rituximab. Arthritis Care Res 2011; 63: 454-459.
- 16 Kavanagh D, Spitzer D, Kothari PH. et al. New roles for the major human 3’-5’ exonuclease TREX1 in human disease. Cell Cycle 2008; 7: 1718-1725.
- 17 Lee-Kirsch MA, Gong M, Schulz H. et al. Familial chilblain lupus, a monogenic form of cutaneous lupus erythematosus, maps to chromosome 3p Am. J. Hum. Genet 2006; 79: 731-737.
- 18 Lee-Kirsch MA, Gong M, Chowdhury D. et al. Mutations in the gene encoding the 3’-5’ DNA exonuclease TREX1 are associated with systemic lupus erythematosus Nat. Genet 2007; 39: 1065-1067.
- 19 Richards A, van den Maagdenberg AM, Jen JC. et al. C-terminal truncations in human 3’-5’ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy Nat. Genet 2007; 39: 1068-1070.
- 20 Tungler V, Silver RM, Walkenhorst H. et al. Inherited or de novo mutation affecting aspartate 18 of TREX1 results in either familial chilblain lupus or Aicardi-Goutieres syndrome. Br J Dermatol 2012; 167: 212-214.
- 21 Chatterjee M, Hedrich CM. et al. CD3-T cell receptor co-stimulation through SLAMF3 and SLAMF6 receptors enhances RORgammat recruitment to the IL17A promoter in human T lymphocytes. J Biol Chem 2012; 287: 38168-38177.
- 22 Chatterjee M, Rauen T, Kis-Toth K. et al. Increased expression of SLAM receptors SLAMF3 and SLAMF6 in systemic lupus erythematosus T lymphocytes promotes Th17 differentiation. J. Immunol 2012; 188: 1206-1212.
- 23 Detre C, Keszei M, Romero X. et al. SLAM family receptors and the SLAM-associated protein (SAP) modulate T cell functions. Semin Immunopathol 2010; 32: 157-171.
- 24 Morra M, Howie D, Grande MS. et al. X-linked lymphoproliferative disease: a progressive immunodeficiency. Annu Rev Immunol 2001; 19: 657-682.
- 25 Chen K, Nishi H, Travers R. et al. Endocytosis of soluble immune complexes leads to their clearance by FcgammaRIIIB but induces neutrophil extracellular traps via FcgammaRIIA in vivo. Blood 2012; 120: 4421-4431.
- 26 Harley JB, arcon-Riquelme ME, Criswell LA. et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 2008; 40: 204-210.
- 27 Hedrich CM, Fiebig B, Hauck FH. et al. Chilblain lupus erythematosus-a review of literature. Clin Rheumatol 2008; 27: 1341.
- 28 Namjou B, Kothari PH, Kelly JA. et al. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun 2011; 12: 270-279.
- 29 Ballestar E. Epigenetic alterations in autoimmune rheumatic diseases. Nat Rev Rheumatol 2011; 7: 263-271.
- 30 Renaudineau Y, Youinou P. Epigenetics and autoimmunity, with special emphasis on methylation. Keio J Med 2011; 60: 10-16.
- 31 Javierre BM, Fernandez AF, Richter J. et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res 2010; 20: 170-179.
- 32 Hedrich CM, Rauen T, Tsokos GC. cAMP-responsive element modulator (CREM)alpha protein signaling mediates epigenetic remodeling of the human interleukin-2 gene: implications in systemic lupus erythematosus. J. Biol. Chem 2011; 286: 43429-43436.
- 33 Hedrich CM, Crispin JC, Rauen T. et al. cAMP response element modulator alpha controls IL2 and IL17A expression during CD4 lineage commitment and subset distribution in lupus. Proc Natl Acad Sci U S A 2010; 109: 16606-16611.
- 34 Rauen T, Hedrich CM, Juang YT. et al. cAMP-responsive element modulator (CREM)alpha protein induces interleukin 17A expression and mediates epigenetic alterations at the interleukin-17A gene locus in patients with systemic lupus erythematosus. J. Biol. Chem 2011; 286: 43437-43446.