Semin Respir Crit Care Med 2018; 39(02): 155-171
DOI: 10.1055/s-0037-1618567
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Chronic Lung Allograft Dysfunction: Evolving Concepts and Therapies

Ariss DerHovanessian
1   Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
,
W. Dean Wallace
2   Department of Pathology and Laboratory Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
,
Joseph P. Lynch III
1   Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
,
John A. Belperio
1   Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
,
S. Sam Weigt
1   Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
› Author Affiliations
Further Information

Publication History

Publication Date:
26 March 2018 (online)

Abstract

Lung transplantation has become an established therapeutic option for a variety of end-stage lung diseases. Technical advances in graft procurement, implantation, perioperative care, immunosuppression, and posttransplant medical management have led to significant improvements in 1-year survival, but outcomes after the first year have improved minimally over the last two decades. The main limitation to better long-term survival after lung transplantation is chronic lung allograft dysfunction (CLAD). CLAD also impairs quality of life and increases the costs of medical care. Our understanding of CLAD manifestations, risk factors, and mechanisms is rapidly evolving. Recognition of different CLAD phenotypes (e.g., bronchiolitis obliterans syndrome and restrictive allograft syndrome) and the unique pathogenic mechanisms will be important for developing novel therapies. In addition to alloimmune-mediated rejection, we now recognize the importance of alloimmune-independent mechanisms of injury to the allograft. CLAD is the consequence of dysregulated repair of allograft injury. Unfortunately, currently available therapies for CLAD are usually not effective. However, the advances in knowledge, reviewed in this manuscript, should lead to novel strategies for CLAD prevention and treatment, as well as improvement in long-term outcomes after lung transplantation. We provide an overview of the evolving terminology related to CLAD, its varying clinical phenotypes and their diagnosis, natural history, pathogenesis, and potential treatments.

 
  • References

  • 1 Reitz BA, Wallwork JL, Hunt SA. , et al. Heart-lung transplantation: successful therapy for patients with pulmonary vascular disease. N Engl J Med 1982; 306 (10) 557-564
  • 2 Toronto Lung Transplant G. ; Toronto Lung Transplant Group. Unilateral lung transplantation for pulmonary fibrosis. N Engl J Med 1986; 314 (18) 1140-1145
  • 3 Chambers DC, Yusen RD, Cherikh WS. , et al; International Society for Heart and Lung Transplantation. The Registry of the International Society for Heart and Lung Transplantation: Thirty-fourth Adult Lung And Heart-Lung Transplantation Report-2017; Focus Theme: allograft ischemic time. J Heart Lung Transplant 2017; 36 (10) 1047-1059
  • 4 Grossman RF, Frost A, Zamel N. , et al; The Toronto Lung Transplant Group. Results of single-lung transplantation for bilateral pulmonary fibrosis. N Engl J Med 1990; 322 (11) 727-733
  • 5 Colvin M, Smith JM, Skeans MA. , et al. OPTN/SRTR 2015 annual data report: heart. Am J Transplant 2017; 17 (Suppl. 01) 286-356
  • 6 Hart A, Smith JM, Skeans MA. , et al. OPTN/SRTR 2015 annual data report: kidney. Am J Transplant 2017; 17 (Suppl. 01) 21-116
  • 7 Kim WR, Lake JR, Smith JM. , et al. OPTN/SRTR 2015 annual data report: liver. Am J Transplant 2017; 17 (Suppl. 01) 174-251
  • 8 Yusen RD, Edwards LB, Kucheryavaya AY. , et al. The Registry of the International Society for Heart and Lung Transplantation: Thirty-second Official Adult Lung and Heart-Lung Transplantation Report--2015; Focus Theme: early graft failure. J Heart Lung Transplant 2015; 34 (10) 1264-1277
  • 9 Knoop C, Estenne M. Acute and chronic rejection after lung transplantation. Semin Respir Crit Care Med 2006; 27 (05) 521-533
  • 10 Vermeulen KM, Groen H, van der Bij W, Erasmus ME, Koëter GH, TenVergert EM. The effect of bronchiolitis obliterans syndrome on health related quality of life. Clin Transplant 2004; 18 (04) 377-383
  • 11 van den Berg JW, van Enckevort PJ, TenVergert EM, Postma DS, van der Bij W, Koëter GH. Bronchiolitis obliterans syndrome and additional costs of lung transplantation. Chest 2000; 118 (06) 1648-1652
  • 12 Burke CM, Theodore J, Dawkins KD. , et al. Post-transplant obliterative bronchiolitis and other late lung sequelae in human heart-lung transplantation. Chest 1984; 86 (06) 824-829
  • 13 Yousem SA, Burke CM, Billingham ME. Pathologic pulmonary alterations in long-term human heart-lung transplantation. Hum Pathol 1985; 16 (09) 911-923
  • 14 Griffith BP, Paradis IL, Zeevi A. , et al. Immunologically mediated disease of the airways after pulmonary transplantation. Ann Surg 1988; 208 (03) 371-378
  • 15 Estenne M, Ketelbant P, Primo G, Yernault JC. Human heart-lung transplantation: physiologic aspects of the denervated lung and post-transplant obliterative bronchiolitis. Am Rev Respir Dis 1987; 135 (04) 976-978
  • 16 Burke CM, Theodore J, Baldwin JC. , et al. Twenty-eight cases of human heart-lung transplantation. Lancet 1986; 1 (8480): 517-519
  • 17 Coalson JJ, Kastl DG, Whalen MH, Greenfield LG. Allografted lungs in matched dogs with induced pulmonary hypertension. Am J Pathol 1974; 74 (03) 533-550
  • 18 Veith FJ, Sinha SB, Blümcke S. , et al. Nature and evolution of lung allograft rejection with and without immunosuppression. J Thorac Cardiovasc Surg 1972; 63 (04) 509-520
  • 19 Baker RR, Sabanayagam P, Zarins CK. , et al. Functional and morphologic changes after lung allografting in baboons. Surg Gynecol Obstet 1973; 137 (04) 650-654
  • 20 Byers III JM, Sabanayagam P, Baker RR, Hutchins GM. Pathologic changes in baboon lung allografts. Comparison of two immunosuppression regimes. Ann Surg 1973; 178 (06) 754-760
  • 21 Joseph WL, Morton DL. Morphologic alterations in the transplanted primate lung. Surg Gynecol Obstet 1971; 133 (05) 821-825
  • 22 Harjula A, Baldwin JC, Tazelaar HD, Jamieson SW, Reitz BA, Shumway NE. Minimal lung pathology in long-term primate survivors of heart-lung transplantation. Transplantation 1987; 44 (06) 852-854
  • 23 Tazelaar HD, Prop J, Nieuwenhuis P, Billingham ME, Wildevuur CR. Obliterative bronchiolitis in the transplanted rat lung. Transplant Proc 1987; 19 (1 Pt 2): 1052
  • 24 Prop J, Wildevuur CR, Nieuwenhuis P. Lung allograft rejection in the rat. III. Corresponding morphological rejection phases in various rat strain combinations. Transplantation 1985; 40 (02) 132-136
  • 25 Romaniuk A, Prop J, Petersen AH, Nieuwenhuis P, Wildevuur CR. Increased expression of class II major histocompatibility complex antigens in untreated and cyclosporine-treated rat lung allografts. J Heart Transplant 1986; 5 (06) 455-460
  • 26 Romaniuk A, Prop J, Petersen AH, Wildevuur CR, Nieuwenhuis P. Expression of class II major histocompatibility complex antigens by bronchial epithelium in rat lung allografts. Transplantation 1987; 44 (02) 209-214
  • 27 Tazelaar HD, Prop J, Nieuwenhuis P, Billingham ME, Wildevuur CR. Airway pathology in the transplanted rat lung. Transplantation 1988; 45 (05) 864-869
  • 28 Berry GJ, Brunt EM, Chamberlain D. , et al; The International Society for Heart Transplantation. A working formulation for the standardization of nomenclature in the diagnosis of heart and lung rejection: Lung Rejection Study Group. J Heart Transplant 1990; 9 (06) 593-601
  • 29 Cooper JD, Billingham M, Egan T. , et al; International Society for Heart and Lung Transplantation. A working formulation for the standardization of nomenclature and for clinical staging of chronic dysfunction in lung allografts. J Heart Lung Transplant 1993; 12 (05) 713-716
  • 30 Yousem SA, Berry GJ, Cagle PT. , et al. Revision of the 1990 working formulation for the classification of pulmonary allograft rejection: Lung Rejection Study Group. J Heart Lung Transplant 1996; 15 (1 Pt 1): 1-15
  • 31 Stewart S, Fishbein MC, Snell GI. , et al. Revision of the 1996 working formulation for the standardization of nomenclature in the diagnosis of lung rejection. J Heart Lung Transplant 2007; 26 (12) 1229-1242
  • 32 Estenne M, Maurer JR, Boehler A. , et al. Bronchiolitis obliterans syndrome 2001: an update of the diagnostic criteria. J Heart Lung Transplant 2002; 21 (03) 297-310
  • 33 Meyer KC, Raghu G, Verleden GM. , et al; ISHLT/ATS/ERS BOS Task Force Committee; ISHLT/ATS/ERS BOS Task Force Committee. An international ISHLT/ATS/ERS clinical practice guideline: diagnosis and management of bronchiolitis obliterans syndrome. Eur Respir J 2014; 44 (06) 1479-1503
  • 34 Bando K, Paradis IL, Similo S. , et al. Obliterative bronchiolitis after lung and heart-lung transplantation. An analysis of risk factors and management. J Thorac Cardiovasc Surg 1995; 110 (01) 4-13 , discussion 13–14
  • 35 Keller CA, Cagle PT, Brown RW, Noon G, Frost AE. Bronchiolitis obliterans in recipients of single, double, and heart-lung transplantation. Chest 1995; 107 (04) 973-980
  • 36 Girgis RE, Tu I, Berry GJ. , et al. Risk factors for the development of obliterative bronchiolitis after lung transplantation. J Heart Lung Transplant 1996; 15 (12) 1200-1208
  • 37 Kroshus TJ, Kshettry VR, Savik K, John R, Hertz MI, Bolman III RM. Risk factors for the development of bronchiolitis obliterans syndrome after lung transplantation. J Thorac Cardiovasc Surg 1997; 114 (02) 195-202
  • 38 Husain AN, Siddiqui MT, Holmes EW. , et al. Analysis of risk factors for the development of bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 1999; 159 (03) 829-833
  • 39 Clelland C, Higenbottam T, Otulana B. , et al. Histologic prognostic indicators for the lung allografts of heart-lung transplants. J Heart Transplant 1990; 9 (3 Pt 1): 177-185 , discussion 185–186
  • 40 El-Gamel A, Sim E, Hasleton P. , et al. Transforming growth factor beta (TGF-beta) and obliterative bronchiolitis following pulmonary transplantation. J Heart Lung Transplant 1999; 18 (09) 828-837
  • 41 Glanville AR, Aboyoun CL, Havryk A, Plit M, Rainer S, Malouf MA. Severity of lymphocytic bronchiolitis predicts long-term outcome after lung transplantation. Am J Respir Crit Care Med 2008; 177 (09) 1033-1040
  • 42 Ross DJ, Marchevsky A, Kramer M, Kass RM. “Refractoriness” of airflow obstruction associated with isolated lymphocytic bronchiolitis/bronchitis in pulmonary allografts. J Heart Lung Transplant 1997; 16 (08) 832-838
  • 43 Daud SA, Yusen RD, Meyers BF. , et al. Impact of immediate primary lung allograft dysfunction on bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 2007; 175 (05) 507-513
  • 44 Huang HJ, Yusen RD, Meyers BF. , et al. Late primary graft dysfunction after lung transplantation and bronchiolitis obliterans syndrome. Am J Transplant 2008; 8 (11) 2454-2462
  • 45 Bharat A, Kuo E, Steward N. , et al. Immunological link between primary graft dysfunction and chronic lung allograft rejection. Ann Thorac Surg 2008; 86 (01) 189-195 , discussion 196–197
  • 46 Whitson BA, Prekker ME, Herrington CS. , et al. Primary graft dysfunction and long-term pulmonary function after lung transplantation. J Heart Lung Transplant 2007; 26 (10) 1004-1011
  • 47 DerHovanessian A, Weigt SS, Palchevskiy V. , et al. The role of TGF-β in the association between primary graft dysfunction and bronchiolitis obliterans syndrome. Am J Transplant 2016; 16 (02) 640-649
  • 48 D'Ovidio F, Mura M, Tsang M. , et al. Bile acid aspiration and the development of bronchiolitis obliterans after lung transplantation. J Thorac Cardiovasc Surg 2005; 129 (05) 1144-1152
  • 49 Young LR, Hadjiliadis D, Davis RD, Palmer SM. Lung transplantation exacerbates gastroesophageal reflux disease. Chest 2003; 124 (05) 1689-1693
  • 50 Blondeau K, Mertens V, Vanaudenaerde BA. , et al. Gastro-oesophageal reflux and gastric aspiration in lung transplant patients with or without chronic rejection. Eur Respir J 2008; 31 (04) 707-713
  • 51 Cantu III E, Appel III JZ, Hartwig MG. , et al. J. Maxwell Chamberlain Memorial Paper. Early fundoplication prevents chronic allograft dysfunction in patients with gastroesophageal reflux disease. Ann Thorac Surg 2004; 78 (04) 1142-1151 , discussion 1142–1151
  • 52 Hartwig MG, Appel JZ, Davis RD. Antireflux surgery in the setting of lung transplantation: strategies for treating gastroesophageal reflux disease in a high-risk population. Thorac Surg Clin 2005; 15 (03) 417-427
  • 53 Davis Jr RD, Lau CL, Eubanks S. , et al. Improved lung allograft function after fundoplication in patients with gastroesophageal reflux disease undergoing lung transplantation. J Thorac Cardiovasc Surg 2003; 125 (03) 533-542
  • 54 Paraskeva M, Bailey M, Levvey BJ. , et al. Cytomegalovirus replication within the lung allograft is associated with bronchiolitis obliterans syndrome. Am J Transplant 2011; 11 (10) 2190-2196
  • 55 Keenan RJ, Lega ME, Dummer JS. , et al. Cytomegalovirus serologic status and postoperative infection correlated with risk of developing chronic rejection after pulmonary transplantation. Transplantation 1991; 51 (02) 433-438
  • 56 Smith MA, Sundaresan S, Mohanakumar T. , et al. Effect of development of antibodies to HLA and cytomegalovirus mismatch on lung transplantation survival and development of bronchiolitis obliterans syndrome. J Thorac Cardiovasc Surg 1998; 116 (05) 812-820
  • 57 Kumar D, Erdman D, Keshavjee S. , et al. Clinical impact of community-acquired respiratory viruses on bronchiolitis obliterans after lung transplant. Am J Transplant 2005; 5 (08) 2031-2036
  • 58 Khalifah AP, Hachem RR, Chakinala MM. , et al. Respiratory viral infections are a distinct risk for bronchiolitis obliterans syndrome and death. Am J Respir Crit Care Med 2004; 170 (02) 181-187
  • 59 Neurohr C, Huppmann P, Leuchte H. , et al; Munich Lung Transplant Group. Human herpesvirus 6 in bronchalveolar lavage fluid after lung transplantation: a risk factor for bronchiolitis obliterans syndrome?. Am J Transplant 2005; 5 (12) 2982-2991
  • 60 Bridges ND, Spray TL, Collins MH, Bowles NE, Towbin JA. Adenovirus infection in the lung results in graft failure after lung transplantation. J Thorac Cardiovasc Surg 1998; 116 (04) 617-623
  • 61 Palmer Jr SM, Henshaw NG, Howell DN, Miller SE, Davis RD, Tapson VF. Community respiratory viral infection in adult lung transplant recipients. Chest 1998; 113 (04) 944-950
  • 62 Allyn PR, Duffy EL, Humphries RM. , et al. Graft loss and CLAD-onset is hastened by viral pneumonia after lung transplantation. Transplantation 2016; 100 (11) 2424-2431
  • 63 Botha P, Archer L, Anderson RL. , et al. Pseudomonas aeruginosa colonization of the allograft after lung transplantation and the risk of bronchiolitis obliterans syndrome. Transplantation 2008; 85 (05) 771-774
  • 64 Vos R, Vanaudenaerde BM, Geudens N, Dupont LJ, Van Raemdonck DE, Verleden GM. Pseudomonal airway colonisation: risk factor for bronchiolitis obliterans syndrome after lung transplantation?. Eur Respir J 2008; 31 (05) 1037-1045
  • 65 Weigt SS, Elashoff RM, Huang C. , et al. Aspergillus colonization of the lung allograft is a risk factor for bronchiolitis obliterans syndrome. Am J Transplant 2009; 9 (08) 1903-1911
  • 66 Weigt SS, Copeland CA, Derhovanessian A. , et al. Colonization with small conidia Aspergillus species is associated with bronchiolitis obliterans syndrome: a two-center validation study. Am J Transplant 2013; 13 (04) 919-927
  • 67 Chanut-Delalande H, Fichard A, Bernocco S, Garrone R, Hulmes DJ, Ruggiero F. Control of heterotypic fibril formation by collagen V is determined by chain stoichiometry. J Biol Chem 2001; 276 (26) 24352-24359
  • 68 Iwata T, Chiyo M, Yoshida S. , et al. Lung transplant ischemia reperfusion injury: metalloprotease inhibition down-regulates exposure of type V collagen, growth-related oncogene-induced neutrophil chemotaxis, and tumor necrosis factor-alpha expression. Transplantation 2008; 85 (03) 417-426
  • 69 Hachem RR, Tiriveedhi V, Patterson GA, Aloush A, Trulock EP, Mohanakumar T. Antibodies to K-α 1 tubulin and collagen V are associated with chronic rejection after lung transplantation. Am J Transplant 2012; 12 (08) 2164-2171
  • 70 Tiriveedhi V, Angaswamy N, Brand D. , et al. A shift in the collagen V antigenic epitope leads to T helper phenotype switch and immune response to self-antigen leading to chronic lung allograft rejection. Clin Exp Immunol 2012; 167 (01) 158-168
  • 71 Haque MA, Mizobuchi T, Yasufuku K. , et al. Evidence for immune responses to a self-antigen in lung transplantation: role of type V collagen-specific T cells in the pathogenesis of lung allograft rejection. J Immunol 2002; 169 (03) 1542-1549
  • 72 Goers TA, Ramachandran S, Aloush A, Trulock E, Patterson GA, Mohanakumar T. De novo production of K-alpha1 tubulin-specific antibodies: role in chronic lung allograft rejection. J Immunol 2008; 180 (07) 4487-4494
  • 73 Saini D, Weber J, Ramachandran S. , et al. Alloimmunity-induced autoimmunity as a potential mechanism in the pathogenesis of chronic rejection of human lung allografts. J Heart Lung Transplant 2011; 30 (06) 624-631
  • 74 Woodrow JP, Shlobin OA, Barnett SD, Burton N, Nathan SD. Comparison of bronchiolitis obliterans syndrome to other forms of chronic lung allograft dysfunction after lung transplantation. J Heart Lung Transplant 2010; 29 (10) 1159-1164
  • 75 Sato M, Waddell TK, Wagnetz U. , et al. Restrictive allograft syndrome (RAS): a novel form of chronic lung allograft dysfunction. J Heart Lung Transplant 2011; 30 (07) 735-742
  • 76 Verleden GM, Vos R, Verleden SE. , et al. Survival determinants in lung transplant patients with chronic allograft dysfunction. Transplantation 2011; 92 (06) 703-708
  • 77 Verleden GM, Raghu G, Meyer KC, Glanville AR, Corris P. A new classification system for chronic lung allograft dysfunction. J Heart Lung Transplant 2014; 33 (02) 127-133
  • 78 Todd JL, Jain R, Pavlisko EN. , et al. Impact of forced vital capacity loss on survival after the onset of chronic lung allograft dysfunction. Am J Respir Crit Care Med 2014; 189 (02) 159-166
  • 79 DerHovanessian A, Todd JL, Zhang A. , et al. Validation and refinement of chronic lung allograft dysfunction phenotypes in bilateral and single lung recipients. Ann Am Thorac Soc 2016; 13 (05) 627-635
  • 80 Paraskeva M, McLean C, Ellis S. , et al. Acute fibrinoid organizing pneumonia after lung transplantation. Am J Respir Crit Care Med 2013; 187 (12) 1360-1368
  • 81 Billingham ME. Pathology of the transplanted heart and lung. Cardiovasc Clin 1990; 20 (02) 71-85
  • 82 Glanville AR. Bronchoscopic monitoring after lung transplantation. Semin Respir Crit Care Med 2010; 31 (02) 208-221
  • 83 Nathan SD, Barnett SD, Wohlrab J, Burton N. Bronchiolitis obliterans syndrome: utility of the new guidelines in single lung transplant recipients. J Heart Lung Transplant 2003; 22 (04) 427-432
  • 84 Lama VN, Murray S, Mumford JA. , et al. Prognostic value of bronchiolitis obliterans syndrome stage 0-p in single-lung transplant recipients. Am J Respir Crit Care Med 2005; 172 (03) 379-383
  • 85 Hachem RR, Chakinala MM, Yusen RD. , et al. The predictive value of bronchiolitis obliterans syndrome stage 0-p. Am J Respir Crit Care Med 2004; 169 (04) 468-472
  • 86 Collins J. Imaging of the chest after lung transplantation. J Thorac Imaging 2002; 17 (02) 102-112
  • 87 Miller Jr WT, Kotloff RM, Blumenthal NP, Aronchick JM, Gefter WB, Miller WT. Utility of high resolution computed tomography in predicting bronchiolitis obliterans syndrome following lung transplantation: preliminary findings. J Thorac Imaging 2001; 16 (02) 76-80
  • 88 Konen E, Gutierrez C, Chaparro C. , et al. Bronchiolitis obliterans syndrome in lung transplant recipients: can thin-section CT findings predict disease before its clinical appearance?. Radiology 2004; 231 (02) 467-473
  • 89 Berstad AE, Aaløkken TM, Kolbenstvedt A, Bjørtuft O. Performance of long-term CT monitoring in diagnosing bronchiolitis obliterans after lung transplantation. Eur J Radiol 2006; 58 (01) 124-131
  • 90 Kramer MR, Stoehr C, Whang JL. , et al. The diagnosis of obliterative bronchiolitis after heart-lung and lung transplantation: low yield of transbronchial lung biopsy. J Heart Lung Transplant 1993; 12 (04) 675-681
  • 91 Pomerance A, Madden B, Burke MM, Yacoub MH. Transbronchial biopsy in heart and lung transplantation: clinicopathologic correlations. J Heart Lung Transplant 1995; 14 (04) 761-773
  • 92 Chamberlain D, Maurer J, Chaparro C, Idolor L. Evaluation of transbronchial lung biopsy specimens in the diagnosis of bronchiolitis obliterans after lung transplantation. J Heart Lung Transplant 1994; 13 (06) 963-971
  • 93 Gerhardt SG, McDyer JF, Girgis RE, Conte JV, Yang SC, Orens JB. Maintenance azithromycin therapy for bronchiolitis obliterans syndrome: results of a pilot study. Am J Respir Crit Care Med 2003; 168 (01) 121-125
  • 94 Verleden GM, Dupont LJ. Azithromycin therapy for patients with bronchiolitis obliterans syndrome after lung transplantation. Transplantation 2004; 77 (09) 1465-1467
  • 95 Yates B, Murphy DM, Forrest IA. , et al. Azithromycin reverses airflow obstruction in established bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 2005; 172 (06) 772-775
  • 96 Vos R, Vanaudenaerde BM, Ottevaere A. , et al. Long-term azithromycin therapy for bronchiolitis obliterans syndrome: divide and conquer?. J Heart Lung Transplant 2010; 29 (12) 1358-1368
  • 97 Gottlieb J, Szangolies J, Koehnlein T, Golpon H, Simon A, Welte T. Long-term azithromycin for bronchiolitis obliterans syndrome after lung transplantation. Transplantation 2008; 85 (01) 36-41
  • 98 Corris PA, Ryan VA, Small T. , et al. A randomised controlled trial of azithromycin therapy in bronchiolitis obliterans syndrome (BOS) post lung transplantation. Thorax 2015; 70 (05) 442-450
  • 99 Federica M, Nadia S, Monica M. , et al. Clinical and immunological evaluation of 12-month azithromycin therapy in chronic lung allograft rejection. Clin Transplant 2011; 25 (04) E381-E389
  • 100 Verleden GM, Vanaudenaerde BM, Dupont LJ, Van Raemdonck DE. Azithromycin reduces airway neutrophilia and interleukin-8 in patients with bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 2006; 174 (05) 566-570
  • 101 Vandermeulen E, Verleden SE, Ruttens D. , et al. BAL neutrophilia in azithromycin-treated lung transplant recipients: clinical significance. Transpl Immunol 2015; 33 (01) 37-44
  • 102 de Jong PA, Vos R, Verleden GM, Vanaudenaerde BM, Verschakelen JA. Thin-section computed tomography findings before and after azithromycin treatment of neutrophilic reversible lung allograft dysfunction. Eur Radiol 2011; 21 (12) 2466-2474
  • 103 Vos R, Blondeau K, Vanaudenaerde BM. , et al. Airway colonization and gastric aspiration after lung transplantation: do birds of a feather flock together?. J Heart Lung Transplant 2008; 27 (08) 843-849
  • 104 Zheng L, Walters EH, Ward C. , et al. Airway neutrophilia in stable and bronchiolitis obliterans syndrome patients following lung transplantation. Thorax 2000; 55 (01) 53-59
  • 105 Vos R, Vanaudenaerde BM, Verleden SE. , et al. Bronchoalveolar lavage neutrophilia in acute lung allograft rejection and lymphocytic bronchiolitis. J Heart Lung Transplant 2010; 29 (11) 1259-1269
  • 106 Pellegrino R, Viegi G, Brusasco V. , et al. Interpretative strategies for lung function tests. Eur Respir J 2005; 26 (05) 948-968
  • 107 Suhling H, Dettmer S, Greer M. , et al. Phenotyping chronic lung allograft dysfunction using body plethysmography and computed tomography. Am J Transplant 2016; 16 (11) 3163-3170
  • 108 Suwara MI, Vanaudenaerde BM, Verleden SE. , et al. Mechanistic differences between phenotypes of chronic lung allograft dysfunction after lung transplantation. Transpl Int 2014; 27 (08) 857-867
  • 109 Dettmer S, Shin HO, Vogel-Claussen J. , et al. CT at onset of chronic lung allograft dysfunction in lung transplant patients predicts development of the restrictive phenotype and survival. Eur J Radiol 2017; 94: 78-84
  • 110 Pakhale SS, Hadjiliadis D, Howell DN. , et al. Upper lobe fibrosis: a novel manifestation of chronic allograft dysfunction in lung transplantation. J Heart Lung Transplant 2005; 24 (09) 1260-1268
  • 111 Konen E, Weisbrod GL, Pakhale S, Chung T, Paul NS, Hutcheon MA. Fibrosis of the upper lobes: a newly identified late-onset complication after lung transplantation?. AJR Am J Roentgenol 2003; 181 (06) 1539-1543
  • 112 Kneidinger N, Milger K, Janitza S. , et al. Lung volumes predict survival in patients with chronic lung allograft dysfunction. Eur Respir J 2017; 49 (04) 49
  • 113 Ofek E, Sato M, Saito T. , et al. Restrictive allograft syndrome post lung transplantation is characterized by pleuroparenchymal fibroelastosis. Mod Pathol 2013; 26 (03) 350-356
  • 114 Sato M, Hwang DM, Ohmori-Matsuda K. , et al. Revisiting the pathologic finding of diffuse alveolar damage after lung transplantation. J Heart Lung Transplant 2012; 31 (04) 354-363
  • 115 Shino MY, Weigt SS, Li N. , et al. CXCR3 ligands are associated with the continuum of diffuse alveolar damage to chronic lung allograft dysfunction. Am J Respir Crit Care Med 2013; 188 (09) 1117-1125
  • 116 Verleden SE, Gottlieb J, Dubbeldam A. , et al. “White-out” after lung transplantation: a multicenter cohort description of late acute graft failure. Am J Transplant 2017; 17 (07) 1905-1911
  • 117 Vermuelen KM, van der Bij W, Erasmus ME, TenVergert EM. Long-term health-related quality of life after lung transplantation: different predictors for different dimensions. J Heart Lung Transplant 2007; 26 (02) 188-193
  • 118 Lama VN, Murray S, Lonigro RJ. , et al. Course of FEV(1) after onset of bronchiolitis obliterans syndrome in lung transplant recipients. Am J Respir Crit Care Med 2007; 175 (11) 1192-1198
  • 119 Jackson CH, Sharples LD, McNeil K, Stewart S, Wallwork J. Acute and chronic onset of bronchiolitis obliterans syndrome (BOS): are they different entities?. J Heart Lung Transplant 2002; 21 (06) 658-666
  • 120 Burton CM, Carlsen J, Mortensen J, Andersen CB, Milman N, Iversen M. Long-term survival after lung transplantation depends on development and severity of bronchiolitis obliterans syndrome. J Heart Lung Transplant 2007; 26 (07) 681-686
  • 121 Finlen Copeland CA, Snyder LD, Zaas DW, Turbyfill WJ, Davis WA, Palmer SM. Survival after bronchiolitis obliterans syndrome among bilateral lung transplant recipients. Am J Respir Crit Care Med 2010; 182 (06) 784-789
  • 122 Sato M, Ohmori-Matsuda K, Saito T. , et al. Time-dependent changes in the risk of death in pure bronchiolitis obliterans syndrome (BOS). J Heart Lung Transplant 2013; 32 (05) 484-491
  • 123 Verleden SE, Todd JL, Sato M. , et al. Impact of CLAD phenotype on survival after lung retransplantation: a multicenter study. Am J Transplant 2015; 15 (08) 2223-2230
  • 124 Midwood KS, Williams LV, Schwarzbauer JE. Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 2004; 36 (06) 1031-1037
  • 125 Qin S, Rottman JB, Myers P. , et al. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest 1998; 101 (04) 746-754
  • 126 Belperio JA, Keane MP, Burdick MD. , et al. Role of CXCL9/CXCR3 chemokine biology during pathogenesis of acute lung allograft rejection. J Immunol 2003; 171 (09) 4844-4852
  • 127 Belperio JA, Keane MP, Burdick MD. , et al. Critical role for CXCR3 chemokine biology in the pathogenesis of bronchiolitis obliterans syndrome. J Immunol 2002; 169 (02) 1037-1049
  • 128 Shino MY, Weigt SS, Li N. , et al. Impact of allograft injury time of onset on the development of chronic lung allograft dysfunction after lung transplantation. Am J Transplant 2017; 17 (05) 1294-1303
  • 129 Shino MY, Weigt SS, Li N. , et al. The prognostic importance of bronchoalveolar lavage fluid CXCL9 during minimal acute rejection on the risk of chronic lung allograft dysfunction. Am J Transplant 2017
  • 130 Shino MY, Weigt SS, Li N. , et al. The prognostic importance of CXCR3 chemokine during organizing pneumonia on the risk of chronic lung allograft dysfunction after lung transplantation. PLoS One 2017; 12 (07) e0180281
  • 131 Weigt SS, Derhovanessian A, Liao E. , et al. CXCR3 chemokine ligands during respiratory viral infections predict lung allograft dysfunction. Am J Transplant 2012; 12 (02) 477-484
  • 132 DiGiovine B, Lynch III JP, Martinez FJ. , et al. Bronchoalveolar lavage neutrophilia is associated with obliterative bronchiolitis after lung transplantation: role of IL-8. J Immunol 1996; 157 (09) 4194-4202
  • 133 Neurohr C, Huppmann P, Samweber B. , et al; Munich Lung Transplant Group. Prognostic value of bronchoalveolar lavage neutrophilia in stable lung transplant recipients. J Heart Lung Transplant 2009; 28 (05) 468-474
  • 134 Belperio JA, Keane MP, Burdick MD. , et al. Role of CXCR2/CXCR2 ligands in vascular remodeling during bronchiolitis obliterans syndrome. J Clin Invest 2005; 115 (05) 1150-1162
  • 135 Reynaud-Gaubert M, Marin V, Thirion X. , et al. Upregulation of chemokines in bronchoalveolar lavage fluid as a predictive marker of post-transplant airway obliteration. J Heart Lung Transplant 2002; 21 (07) 721-730
  • 136 Ruttens D, Verleden SE, Vandermeulen E. , et al. Prophylactic azithromycin therapy after lung transplantation: post hoc analysis of a randomized controlled trial. Am J Transplant 2016; 16 (01) 254-261
  • 137 Jiang X, Khan MA, Tian W. , et al. Adenovirus-mediated HIF-1α gene transfer promotes repair of mouse airway allograft microvasculature and attenuates chronic rejection. J Clin Invest 2011; 121 (06) 2336-2349
  • 138 Borthwick LA, Suwara MI, Carnell SC. , et al. Pseudomonas aeruginosa induced airway epithelial injury drives fibroblast activation: a mechanism in chronic lung allograft dysfunction. Am J Transplant 2016; 16 (06) 1751-1765
  • 139 Hertz MI, Henke CA, Nakhleh RE. , et al. Obliterative bronchiolitis after lung transplantation: a fibroproliferative disorder associated with platelet-derived growth factor. Proc Natl Acad Sci U S A 1992; 89 (21) 10385-10389
  • 140 Kallio EA, Koskinen PK, Aavik E, Buchdunger E, Lemström KB. Role of platelet-derived growth factor in obliterative bronchiolitis (chronic rejection) in the rat. Am J Respir Crit Care Med 1999; 160 (04) 1324-1332
  • 141 Tikkanen JM, Hollmén M, Nykänen AI, Wood J, Koskinen PK, Lemström KB. Role of platelet-derived growth factor and vascular endothelial growth factor in obliterative airway disease. Am J Respir Crit Care Med 2006; 174 (10) 1145-1152
  • 142 Aharinejad S, Taghavi S, Klepetko W, Abraham D. Prediction of lung-transplant rejection by hepatocyte growth factor. Lancet 2004; 363 (9420): 1503-1508
  • 143 Charpin JM, Stern M, Grenet D, Israël-Biet D. Insulinlike growth factor-1 in lung transplants with obliterative bronchiolitis. Am J Respir Crit Care Med 2000; 161 (06) 1991-1998
  • 144 Estenne M, Hertz MI. Bronchiolitis obliterans after human lung transplantation. Am J Respir Crit Care Med 2002; 166 (04) 440-444
  • 145 Scott AI, Sharples LD, Stewart S. Bronchiolitis obliterans syndrome: risk factors and therapeutic strategies. Drugs 2005; 65 (06) 761-771
  • 146 Verleden GM, Dupont LJ, Van Raemdonck DE. Is it bronchiolitis obliterans syndrome or is it chronic rejection: a reappraisal?. Eur Respir J 2005; 25 (02) 221-224
  • 147 Tazelaar HD, Yousem SA. The pathology of combined heart-lung transplantation: an autopsy study. Hum Pathol 1988; 19 (12) 1403-1416
  • 148 Sharples LD, McNeil K, Stewart S, Wallwork J. Risk factors for bronchiolitis obliterans: a systematic review of recent publications. J Heart Lung Transplant 2002; 21 (02) 271-281
  • 149 Verleden SE, Ruttens D, Vandermeulen E. , et al. Bronchiolitis obliterans syndrome and restrictive allograft syndrome: do risk factors differ?. Transplantation 2013; 95 (09) 1167-1172
  • 150 Hodge S, Holmes M, Banerjee B. , et al. Posttransplant bronchiolitis obliterans syndrome is associated with bronchial epithelial to mesenchymal transition. Am J Transplant 2009; 9 (04) 727-733
  • 151 Iacono A, Dauber J, Keenan R. , et al. Interleukin 6 and interferon-gamma gene expression in lung transplant recipients with refractory acute cellular rejection: implications for monitoring and inhibition by treatment with aerosolized cyclosporine. Transplantation 1997; 64 (02) 263-269
  • 152 Lu KC, Jaramillo A, Lecha RL. , et al. Interleukin-6 and interferon-gamma gene polymorphisms in the development of bronchiolitis obliterans syndrome after lung transplantation. Transplantation 2002; 74 (09) 1297-1302
  • 153 Meloni F, Vitulo P, Cascina A. , et al. Bronchoalveolar lavage cytokine profile in a cohort of lung transplant recipients: a predictive role of interleukin-12 with respect to onset of bronchiolitis obliterans syndrome. J Heart Lung Transplant 2004; 23 (09) 1053-1060
  • 154 Moudgil A, Bagga A, Toyoda M, Nicolaidou E, Jordan SC, Ross D. Expression of gamma-IFN mRNA in bronchoalveolar lavage fluid correlates with early acute allograft rejection in lung transplant recipients. Clin Transplant 1999; 13 (02) 201-207
  • 155 Neuringer IP, Walsh SP, Mannon RB, Gabriel S, Aris RM. Enhanced T cell cytokine gene expression in mouse airway obliterative bronchiolitis. Transplantation 2000; 69 (03) 399-405
  • 156 Räisänen-Sokolowski A, Glysing-Jensen T, Russell ME. Leukocyte-suppressing influences of interleukin (IL)-10 in cardiac allografts: insights from IL-10 knockout mice. Am J Pathol 1998; 153 (05) 1491-1500
  • 157 Zhu J, Paul WE. CD4 T cells: fates, functions, and faults. Blood 2008; 112 (05) 1557-1569
  • 158 Zhai Y, Ghobrial RM, Busuttil RW, Kupiec-Weglinski JW. Th1 and Th2 cytokines in organ transplantation: paradigm lost?. Crit Rev Immunol 1999; 19 (02) 155-172
  • 159 Keane MP, Gomperts BN, Weigt S. , et al. IL-13 is pivotal in the fibro-obliterative process of bronchiolitis obliterans syndrome. J Immunol 2007; 178 (01) 511-519
  • 160 Lama VN, Harada H, Badri LN. , et al. Obligatory role for interleukin-13 in obstructive lesion development in airway allografts. Am J Pathol 2006; 169 (01) 47-60
  • 161 Gu L, Tseng S, Horner RM, Tam C, Loda M, Rollins BJ. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 2000; 404 (6776): 407-411
  • 162 Belperio JA, Keane MP, Burdick MD. , et al. Critical role for the chemokine MCP-1/CCR2 in the pathogenesis of bronchiolitis obliterans syndrome. J Clin Invest 2001; 108 (04) 547-556
  • 163 Pain M, Royer PJ, Loy J. , et al; COLT Consortium. T cells promote bronchial epithelial cell secretion of matrix metalloproteinase-9 via a C-C chemokine receptor type 2 pathway: implications for chronic lung allograft dysfunction. Am J Transplant 2017; 17 (06) 1502-1514
  • 164 Vanaudenaerde BM, De Vleeschauwer SI, Vos R. , et al. The role of the IL23/IL17 axis in bronchiolitis obliterans syndrome after lung transplantation. Am J Transplant 2008; 8 (09) 1911-1920
  • 165 Nakagiri T, Inoue M, Morii E. , et al. Local IL-17 production and a decrease in peripheral blood regulatory T cells in an animal model of bronchiolitis obliterans. Transplantation 2010; 89 (11) 1312-1319
  • 166 Fan L, Benson HL, Vittal R. , et al. Neutralizing IL-17 prevents obliterative bronchiolitis in murine orthotopic lung transplantation. Am J Transplant 2011; 11 (05) 911-922
  • 167 Yamada Y, Vandermeulen E, Heigl T. , et al. The role of recipient derived interleukin-17A in a murine orthotopic lung transplant model of restrictive chronic lung allograft dysfunction. Transpl Immunol 2016; 39: 10-17
  • 168 Hachem RR, Yusen RD, Meyers BF. , et al. Anti-human leukocyte antigen antibodies and preemptive antibody-directed therapy after lung transplantation. J Heart Lung Transplant 2010; 29 (09) 973-980
  • 169 Bharat A, Fields RC, Trulock EP, Patterson GA, Mohanakumar T. Induction of IL-10 suppressors in lung transplant patients by CD4+25+ regulatory T cells through CTLA-4 signaling. J Immunol 2006; 177 (08) 5631-5638
  • 170 Fukami N, Ramachandran S, Saini D. , et al. Antibodies to MHC class I induce autoimmunity: role in the pathogenesis of chronic rejection. J Immunol 2009; 182 (01) 309-318
  • 171 Burlingham WJ, Love RB, Jankowska-Gan E. , et al. IL-17-dependent cellular immunity to collagen type V predisposes to obliterative bronchiolitis in human lung transplants. J Clin Invest 2007; 117 (11) 3498-3506
  • 172 Bhorade SM, Chen H, Molinero L. , et al. Decreased percentage of CD4+FoxP3+ cells in bronchoalveolar lavage from lung transplant recipients correlates with development of bronchiolitis obliterans syndrome. Transplantation 2010; 90 (05) 540-546
  • 173 Gregson AL, Hoji A, Palchevskiy V. , et al. Protection against bronchiolitis obliterans syndrome is associated with allograft CCR7+ CD45RA- T regulatory cells. PLoS One 2010; 5 (06) e11354
  • 174 Salman J, Ius F, Knoefel AK. , et al. Association of higher CD4(+) CD25(high) CD127(low), FoxP3(+), and IL-2(+) T cell frequencies early after lung transplantation with less chronic lung allograft dysfunction at two years. Am J Transplant 2017; 17 (06) 1637-1648
  • 175 Piloni D, Morosini M, Magni S. , et al. Analysis of long term CD4+CD25highCD127- T-reg cells kinetics in peripheral blood of lung transplant recipients. BMC Pulm Med 2017; 17 (01) 102
  • 176 Le Moine A, Goldman M, Abramowicz D. Multiple pathways to allograft rejection. Transplantation 2002; 73 (09) 1373-1381
  • 177 Morrell MR, Pilewski JM, Gries CJ. , et al. De novo donor-specific HLA antibodies are associated with early and high-grade bronchiolitis obliterans syndrome and death after lung transplantation. J Heart Lung Transplant 2014; 33 (12) 1288-1294
  • 178 Safavi S, Robinson DR, Soresi S, Carby M, Smith JD. De novo donor HLA-specific antibodies predict development of bronchiolitis obliterans syndrome after lung transplantation. J Heart Lung Transplant 2014; 33 (12) 1273-1281
  • 179 Snyder LD, Wang Z, Chen DF. , et al. Implications for human leukocyte antigen antibodies after lung transplantation: a 10-year experience in 441 patients. Chest 2013; 144 (01) 226-233
  • 180 Le Pavec J, Suberbielle C, Lamrani L. , et al. De-novo donor-specific anti-HLA antibodies 30 days after lung transplantation are associated with a worse outcome. J Heart Lung Transplant 2016; 35 (09) 1067-1077
  • 181 Tikkanen JM, Singer LG, Kim SJ. , et al. De novo DQ donor-specific antibodies are associated with chronic lung allograft dysfunction after lung transplantation. Am J Respir Crit Care Med 2016; 194 (05) 596-606
  • 182 Vandermeulen E, Verleden SE, Bellon H. , et al. Humoral immunity in phenotypes of chronic lung allograft dysfunction: a broncho-alveolar lavage fluid analysis. Transpl Immunol 2016; 38: 27-32
  • 183 Brugière O, Suberbielle C, Thabut G. , et al. Lung transplantation in patients with pretransplantation donor-specific antibodies detected by Luminex assay. Transplantation 2013; 95 (05) 761-765
  • 184 Hadjiliadis D, Chaparro C, Reinsmoen NL. , et al. Pre-transplant panel reactive antibody in lung transplant recipients is associated with significantly worse post-transplant survival in a multicenter study. J Heart Lung Transplant 2005; 24 (7, Suppl) S249-S254
  • 185 Kim M, Townsend KR, Wood IG. , et al. Impact of pretransplant anti-HLA antibodies on outcomes in lung transplant candidates. Am J Respir Crit Care Med 2014; 189 (10) 1234-1239
  • 186 Bosanquet JP, Witt CA, Bemiss BC. , et al. The impact of pre-transplant allosensitization on outcomes after lung transplantation. J Heart Lung Transplant 2015; 34 (11) 1415-1422
  • 187 Levine DJ, Glanville AR, Aboyoun C. , et al. Antibody-mediated rejection of the lung: a consensus report of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2016; 35 (04) 397-406
  • 188 Maruyama T, Jaramillo A, Narayanan K, Higuchi T, Mohanakumar T. Induction of obliterative airway disease by anti-HLA class I antibodies. Am J Transplant 2005; 5 (09) 2126-2134
  • 189 Charreau B. Signaling of endothelial cytoprotection in transplantation. Hum Immunol 2012; 73 (12) 1245-1252
  • 190 Berry GJ, Burke MM, Andersen C. , et al. The 2013 International Society for Heart and Lung Transplantation Working Formulation for the standardization of nomenclature in the pathologic diagnosis of antibody-mediated rejection in heart transplantation. J Heart Lung Transplant 2013; 32 (12) 1147-1162
  • 191 Haas M, Sis B, Racusen LC. , et al; Banff meeting report writing committee. Banff 2013 meeting report: inclusion of c4d-negative antibody-mediated rejection and antibody-associated arterial lesions. Am J Transplant 2014; 14 (02) 272-283
  • 192 Glanville AR. Antibody-mediated rejection in lung transplantation: myth or reality?. J Heart Lung Transplant 2010; 29 (04) 395-400
  • 193 Westall GP, Snell GI. Antibody-mediated rejection in lung transplantation: fable, spin, or fact?. Transplantation 2014; 98 (09) 927-930
  • 194 Bharat A, Mohanakumar T. Immune responses to tissue-restricted nonmajor histocompatibility complex antigens in allograft rejection. J Immunol Res 2017; 2017: 6312514
  • 195 Chiu S, Fernandez R, Subramanian V. , et al. Lung injury combined with loss of regulatory T cells leads to de novo lung-restricted autoimmunity. J Immunol 2016; 197 (01) 51-57
  • 196 Adachi E, Hopkinson I, Hayashi T. Basement-membrane stromal relationships: interactions between collagen fibrils and the lamina densa. Int Rev Cytol 1997; 173: 73-156
  • 197 Yasufuku K, Heidler KM, Woods KA. , et al. Prevention of bronchiolitis obliterans in rat lung allografts by type V collagen-induced oral tolerance. Transplantation 2002; 73 (04) 500-505
  • 198 Bharat A, Saini D, Steward N. , et al. Antibodies to self-antigens predispose to primary lung allograft dysfunction and chronic rejection. Ann Thorac Surg 2010; 90 (04) 1094-1101
  • 199 Andrade CF, Waddell TK, Keshavjee S, Liu M. Innate immunity and organ transplantation: the potential role of toll-like receptors. Am J Transplant 2005; 5 (05) 969-975
  • 200 Chen L, Wang T, Zhou P. , et al. TLR engagement prevents transplantation tolerance. Am J Transplant 2006; 6 (10) 2282-2291
  • 201 Porrett PM, Yuan X, LaRosa DF. , et al. Mechanisms underlying blockade of allograft acceptance by TLR ligands. J Immunol 2008; 181 (03) 1692-1699
  • 202 Todd JL, Wang X, Sugimoto S. , et al. Hyaluronan contributes to bronchiolitis obliterans syndrome and stimulates lung allograft rejection through activation of innate immunity. Am J Respir Crit Care Med 2014; 189 (05) 556-566
  • 203 Palmer SM, Burch LH, Trindade AJ. , et al. Innate immunity influences long-term outcomes after human lung transplant. Am J Respir Crit Care Med 2005; 171 (07) 780-785
  • 204 Kastelijn EA, van Moorsel CH, Rijkers GT. , et al. Polymorphisms in innate immunity genes associated with development of bronchiolitis obliterans after lung transplantation. J Heart Lung Transplant 2010; 29 (06) 665-671
  • 205 Palmer SM, Klimecki W, Yu L. , et al. Genetic regulation of rejection and survival following human lung transplantation by the innate immune receptor CD14. Am J Transplant 2007; 7 (03) 693-699
  • 206 Saito T, Liu M, Binnie M. , et al. Distinct expression patterns of alveolar “alarmins” in subtypes of chronic lung allograft dysfunction. Am J Transplant 2014; 14 (06) 1425-1432
  • 207 Speich R, Boehler A, Thurnheer R, Weder W. Salvage therapy with mycophenolate mofetil for lung transplant bronchiolitis obliterans: importance of dosage. Transplantation 1997; 64 (03) 533-535
  • 208 Whyte RI, Rossi SJ, Mulligan MS. , et al. Mycophenolate mofetil for obliterative bronchiolitis syndrome after lung transplantation. Ann Thorac Surg 1997; 64 (04) 945-948
  • 209 Borro JM, Bravo C, Solé A. , et al. Conversion from cyclosporine to tacrolimus stabilizes the course of lung function in lung transplant recipients with bronchiolitis obliterans syndrome. Transplant Proc 2007; 39 (07) 2416-2419
  • 210 Cairn J, Yek T, Banner NR, Khaghani A, Hodson ME, Yacoub M. Time-related changes in pulmonary function after conversion to tacrolimus in bronchiolitis obliterans syndrome. J Heart Lung Transplant 2003; 22 (01) 50-57
  • 211 Sarahrudi K, Carretta A, Wisser W. , et al. The value of switching from cyclosporine to tacrolimus in the treatment of refractory acute rejection and obliterative bronchiolitis after lung transplantation. Transpl Int 2002; 15 (01) 24-28
  • 212 Snell GI, Esmore DS, Williams TJ. Cytolytic therapy for the bronchiolitis obliterans syndrome complicating lung transplantation. Chest 1996; 109 (04) 874-878
  • 213 Kesten S, Rajagopalan N, Maurer J. Cytolytic therapy for the treatment of bronchiolitis obliterans syndrome following lung transplantation. Transplantation 1996; 61 (03) 427-430
  • 214 Reams BD, Musselwhite LW, Zaas DW. , et al. Alemtuzumab in the treatment of refractory acute rejection and bronchiolitis obliterans syndrome after human lung transplantation. Am J Transplant 2007; 7 (12) 2802-2808
  • 215 Weigt SS, DerHovanessian A, Wallace WD, Lynch III JP, Belperio JA. Bronchiolitis obliterans syndrome: the Achilles' heel of lung transplantation. Semin Respir Crit Care Med 2013; 34 (03) 336-351
  • 216 Sithamparanathan S, Thirugnanasothy L, Morley KE. , et al. Observational study of methotrexate in the treatment of bronchiolitis obliterans syndrome. Transplant Proc 2016; 48 (10) 3387-3392
  • 217 Ensor CR, Rihtarchik LC, Morrell MR. , et al. Rescue alemtuzumab for refractory acute cellular rejection and bronchiolitis obliterans syndrome after lung transplantation. Clin Transplant 2017; 31 (04) 31
  • 218 Weigt SS, Wang X, Palchevskiy V. , et al. Gene expression profiling of bronchoalveolar lavage cells preceding a clinical diagnosis of chronic lung allograft dysfunction. PLoS One 2017; 12 (01) e0169894
  • 219 Gimino VJ, Lande JD, Berryman TR, King RA, Hertz MI. Gene expression profiling of bronchoalveolar lavage cells in acute lung rejection. Am J Respir Crit Care Med 2003; 168 (10) 1237-1242
  • 220 Patil J, Lande JD, Li N, Berryman TR, King RA, Hertz MI. Bronchoalveolar lavage cell gene expression in acute lung rejection: development of a diagnostic classifier. Transplantation 2008; 85 (02) 224-231
  • 221 Porhownik NR, Batobara W, Kepron W, Unruh HW, Bshouty Z. Effect of maintenance azithromycin on established bronchiolitis obliterans syndrome in lung transplant patients. Can Respir J 2008; 15 (04) 199-202
  • 222 Shitrit D, Bendayan D, Gidon S, Saute M, Bakal I, Kramer MR. Long-term azithromycin use for treatment of bronchiolitis obliterans syndrome in lung transplant recipients. J Heart Lung Transplant 2005; 24 (09) 1440-1443
  • 223 Verleden SE, Vandermeulen E, Ruttens D. , et al. Neutrophilic reversible allograft dysfunction (NRAD) and restrictive allograft syndrome (RAS). Semin Respir Crit Care Med 2013; 34 (03) 352-360
  • 224 Parnham MJ, Erakovic Haber V, Giamarellos-Bourboulis EJ, Perletti G, Verleden GM, Vos R. Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther 2014; 143 (02) 225-245
  • 225 Vos R, Vanaudenaerde BM, Verleden SE. , et al. Anti-inflammatory and immunomodulatory properties of azithromycin involved in treatment and prevention of chronic lung allograft rejection. Transplantation 2012; 94 (02) 101-109
  • 226 Willems-Widyastuti A, Vanaudenaerde BM, Vos R. , et al. Azithromycin attenuates fibroblast growth factors induced vascular endothelial growth factor via p38(MAPK) signaling in human airway smooth muscle cells. Cell Biochem Biophys 2013; 67 (02) 331-339
  • 227 Verleden GM, Verleden SE, Vos R. , et al. Montelukast for bronchiolitis obliterans syndrome after lung transplantation: a pilot study. Transpl Int 2011; 24 (07) 651-656
  • 228 Ruttens D, Verleden S, Vandermeulen E. , et al. Montelukast for bronchiolitis obliterans syndrome after lung transplantation: a randomized controlled trial. J Heart Lung Transplant 2016; 35 (04) S43-S4
  • 229 George JF, Gooden CW, Guo L, Kirklin JK. Role for CD4(+)CD25(+) T cells in inhibition of graft rejection by extracorporeal photopheresis. J Heart Lung Transplant 2008; 27 (06) 616-622
  • 230 Knobler R. Extracorporeal photochemotherapy–present and future. Vox Sang 2000; 78 (Suppl. 02) 197-201
  • 231 Rook AH, Cohen JH, Lessin SR, Vowels BR. Therapeutic applications of photopheresis. Dermatol Clin 1993; 11 (02) 339-347
  • 232 Barr ML, Meiser BM, Eisen HJ. , et al; Photopheresis Transplantation Study Group. Photopheresis for the prevention of rejection in cardiac transplantation. N Engl J Med 1998; 339 (24) 1744-1751
  • 233 Costanzo-Nordin MR, Hubbell EA, O'Sullivan EJ. , et al. Successful treatment of heart transplant rejection with photopheresis. Transplantation 1992; 53 (04) 808-815
  • 234 Benden C, Speich R, Hofbauer GF. , et al. Extracorporeal photopheresis after lung transplantation: a 10-year single-center experience. Transplantation 2008; 86 (11) 1625-1627
  • 235 Jaksch P, Scheed A, Keplinger M. , et al. A prospective interventional study on the use of extracorporeal photopheresis in patients with bronchiolitis obliterans syndrome after lung transplantation. J Heart Lung Transplant 2012; 31 (09) 950-957
  • 236 Morrell MR, Despotis GJ, Lublin DM, Patterson GA, Trulock EP, Hachem RR. The efficacy of photopheresis for bronchiolitis obliterans syndrome after lung transplantation. J Heart Lung Transplant 2010; 29 (04) 424-431
  • 237 Benden C, Haughton M, Leonard S, Huber LC. Therapy options for chronic lung allograft dysfunction-bronchiolitis obliterans syndrome following first-line immunosuppressive strategies: a systematic review. J Heart Lung Transplant 2017; 36 (09) 921-933
  • 238 Del Fante C, Scudeller L, Oggionni T. , et al. Long-term off-line extracorporeal photochemotherapy in patients with chronic lung allograft rejection not responsive to conventional treatment: a 10-year single-centre analysis. Respiration 2015; 90 (02) 118-128
  • 239 Greer M, Dierich M, De Wall C. , et al. Phenotyping established chronic lung allograft dysfunction predicts extracorporeal photopheresis response in lung transplant patients. Am J Transplant 2013; 13 (04) 911-918
  • 240 Robinson CA, Huber L, Murer C. , et al. Cessation of extracorporeal photopheresis in chronic lung allograft dysfunction: effects on clinical outcome in adults. Swiss Med Wkly 2017; 147: w14429
  • 241 King Jr TE, Bradford WZ, Castro-Bernardini S. , et al; ASCEND Study Group. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 2014; 370 (22) 2083-2092
  • 242 Noble PW, Albera C, Bradford WZ. , et al. Pirfenidone for idiopathic pulmonary fibrosis: analysis of pooled data from three multinational phase 3 trials. Eur Respir J 2016; 47 (01) 243-253
  • 243 Richeldi L, du Bois RM, Raghu G. , et al; INPULSIS Trial Investigators. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 2014; 370 (22) 2071-2082
  • 244 Ihle F, VonWulffen W, Zimmermann G. , et al. Progressive Allograft Dysfunction Following Lung Transplantation: First Experience With Pirfenidone: A Case Report. Am J Respir Crit Care Med 2013; 187: A1298
  • 245 Vos R, Verleden SE, Ruttens D. , et al. Pirfenidone: a potential new therapy for restrictive allograft syndrome?. Am J Transplant 2013; 13 (11) 3035-3040
  • 246 Pluchart H, Chanoine S, Beaumier L. , et al. DI-087 Restrictive allograft syndrome in lung transplantation: nintedanib as a new therapeutic strategy?. Eur J Hosp Pharm Sci Pract 2017; 24 (Suppl. 01) A152
  • 247 Suhling H, Bollmann B, Gottlieb J. Nintedanib in restrictive chronic lung allograft dysfunction after lung transplantation. J Heart Lung Transplant 2016; 35 (07) 939-940
  • 248 Neujahr DC, Uppal K, Force SD. , et al. Bile acid aspiration associated with lung chemical profile linked to other biomarkers of injury after lung transplantation. Am J Transplant 2014; 14 (04) 841-848
  • 249 Yusen RD, Edwards LB, Kucheryavaya AY. , et al; International Society for Heart and Lung Transplantation. The registry of the International Society for Heart and Lung Transplantation: thirty-first adult lung and heart-lung transplant report–2014; focus theme: retransplantation. J Heart Lung Transplant 2014; 33 (10) 1009-1024
  • 250 Brugière O, Thabut G, Castier Y. , et al. Lung retransplantation for bronchiolitis obliterans syndrome: long-term follow-up in a series of 15 recipients. Chest 2003; 123 (06) 1832-1837
  • 251 Kawut SM, Lederer DJ, Keshavjee S. , et al. Outcomes after lung retransplantation in the modern era. Am J Respir Crit Care Med 2008; 177 (01) 114-120
  • 252 Shyu S, Dew MA, Pilewski JM. , et al. Five-year outcomes with alemtuzumab induction after lung transplantation. J Heart Lung Transplant 2011; 30 (07) 743-754
  • 253 Furuya Y, Jayarajan SN, Taghavi S. , et al. The impact of alemtuzumab and basiliximab induction on patient survival and time to bronchiolitis obliterans syndrome in double lung transplantation recipients. Am J Transplant 2016; 16 (08) 2334-2341
  • 254 Jaksch P, Ankersmit J, Scheed A. , et al. Alemtuzumab in lung transplantation: an open-label, randomized, prospective single center study. Am J Transplant 2014; 14 (08) 1839-1845
  • 255 Keenan RJ, Konishi H, Kawai A. , et al. Clinical trial of tacrolimus versus cyclosporine in lung transplantation. Ann Thorac Surg 1995; 60 (03) 580-584 , discussion 584–585
  • 256 Treede H, Glanville AR, Klepetko W. , et al; European and Australian Investigators in Lung Transplantation. Tacrolimus and cyclosporine have differential effects on the risk of development of bronchiolitis obliterans syndrome: results of a prospective, randomized international trial in lung transplantation. J Heart Lung Transplant 2012; 31 (08) 797-804
  • 257 McNeil K, Glanville AR, Wahlers T. , et al. Comparison of mycophenolate mofetil and azathioprine for prevention of bronchiolitis obliterans syndrome in de novo lung transplant recipients. Transplantation 2006; 81 (07) 998-1003
  • 258 Snell GI, Valentine VG, Vitulo P. , et al; RAD B159 Study Group. Everolimus versus azathioprine in maintenance lung transplant recipients: an international, randomized, double-blind clinical trial. Am J Transplant 2006; 6 (01) 169-177