Adipositas - Ursachen, Folgeerkrankungen, Therapie 2014; 08(03): 126-136
DOI: 10.1055/s-0037-1618851
Originalarbeit
Schattauer GmbH

Nachhaltige Wirkung eines Aktivitätssensors auf die Gewichtsabnahme im Rahmen eines strukturierten ambulanten Schulungsprogramms

Sustainable effect of an activity sensor on weight reduction within a structured outpatient training program
A. Moss
1   Sektion Pädiatrische Endokrinologie und Diabetologie, Interdisziplinäre Adipositasambulanz (Leiter: Prof. Dr. M. Wabitsch), Universitätsklinik für Kinder- und Jugendmedizin, Universität Ulm
,
M. Wabitsch
1   Sektion Pädiatrische Endokrinologie und Diabetologie, Interdisziplinäre Adipositasambulanz (Leiter: Prof. Dr. M. Wabitsch), Universitätsklinik für Kinder- und Jugendmedizin, Universität Ulm
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
21. Dezember 2017 (online)

Zusammenfassung

Hintergrund Körperliche Inaktivität ist eine der Ursachen für Adipositas im Kindes- und Jugendalter. Schulungsprogramme zur Therapie von Adipositas haben neben der Ernährungsumstellung auch die Steigerung der körperlichen Aktivität zum Ziel. Diese Studie sollte überprüfen, ob die zusätzliche Anwendung eines Aktivitätssensors eine Wirkung auf den Therapieerfolg hat.

Patienten und Methodik N=32 adipöse Kinder und Jugendliche (8–16 Jahre), die an einem strukturierten ambulanten Schulungsprogramm teilnahmen, wurden in die Studie eingeschlossen. Die Zuordnung zur Interventionsgruppe (IG) mit Sensor oder Kontrollgruppe (CG) ohne Sensor erfolgte Alters- und BMI-gematcht. Anthropometrische Daten wurden zu Studienbeginn (t0), nach 4 Monaten (t1, Interventionsende) und 8 Monaten (t2, Studienende) erhoben

Ergebnisse Zum Zeitpunkt t2 (4 Monate nach Interventionsende) betrugen die relative Änderungen (t2–t0) für den Bauchumfang -1,23 vs. +2,36 %, für das Gewicht +1,48 vs. +6,37 %, für den BMI -2,30 vs. +3,17 % und für den BMI-SDS -7,79 vs. +1,76 % (IG vs. CG, jeweils p <0,05). Jungen der IG zeigten sowohl zu t1 als auch zu t2 höhere relative Reduktionen des Bauch-, Taillenund Oberarmumfangs sowie des Gewichts, des BMI und des BMI-SDS als Mädchen. Im Vergleich zu den Mädchen übten die Jungen signifikant mehr intensive körperliche Bewegung aus (p <0,05).

Schlussfolgerungen Die Ergebnisse dieser Studie sprechen für eine positive und nachhaltige Wirkung der Anwendung eines Aktivitätssensors auf die Entwicklung der Körperumfänge und des Körpergewichts von Kindern und Jugendlichen mit Adipositas während eines strukturierten ambulanten Schulungsprogramms.

Summary

Background Physical inactivity is one of the causes for obesity in childhood and adolescence. Training programs for obesity aim both to change diet and to increase physical activity. This study should investigate if the additional use of an activity-sensor as part of a structured obesity training program affects the therapeutic success.

Patients and Methods N=32 obese children and adolescents (8–16 years), who participated in a structured outpatient training program were enrolled in this study. The assignment into intervention group (IG) with sensor or control group (CG) without sensor was made age- and gender-matched. The children were instructed to wear the activity-sensor for a period of 4 months. Anthropometric data were collected at baseline of the study (t0), after 4 months (t1, end of intervention), and 8 months (t2, end of study).

Results At time point t2 (4 months after end of intervention) relative changes were: abdominal circumference -1.23 vs. +2.36 %, weight +1.48 vs. +6.37 %, BMI -2.30 vs. +3.17% and BMI z-score -7.79 vs. +1.76% (IG vs. CG, each p <0.05). Boys in the IG showed both at t1 and t2 higher relative reductions in abdominal-, waist- and upper arm circumferences as well as in weight, BMI, and BMI z-score compared to girls. In comparison to girls, boys performed significantly more intensive physical activity (p <0.05).

Conclusions The results of this study suggest a positive and sustained effect of the use of an activity-sensor with regard to the development of body circumferences and body weight of children and adolescents with obesity within a structured outpatient training program.

 
  • Literatur

  • 1 Adams MA, Caparosa S, Thompson S. et al. Translating physical activity recommendations for over- weight adolescents to steps per day. Am J Prev Med 2009; 37 (02) 137-40 Epub 2009/06/16.
  • 2 Andersen LB, Harro M, Sardinha LB. et al. Physi- cal activity and clustered cardiovascular risk in children: a cross-sectional study (The European Youth Heart Study). Lancet 2006; 368 9532 299-304 Epub 2006/07/25.
  • 3 Andersen LB, Sardinha LB, Froberg K. et al. Fitness, fatness and clustering of cardiovascular risk factors in children from Denmark, Estonia and Portugal: the European Youth Heart Study. International journal of pediatric obesity : IJPO : an official journal of the International Association for the Study of Obesity 2008; 03 (Suppl. 01) 58-66 Epub 2008/02/20.
  • 4 Bailey DP, Fairclough SJ, Savory LA. et al. Accele- rometry-assessed sedentary behaviour and physical activity levels during the segmented school day in 10–14-year-old children: the HAPPY study. European journal of pediatrics 2012; 171 (12) 1805-13 Epub 2012/09/18.
  • 5 Baumgartner RN, Siervogel RM, Chumlea WC. et al. Associations between plasma lipoprotein cholesterols, adiposity and adipose tissue distribution during adolescence. International journal of obesity 1989; 13 (01) 31-41 Epub 1989/01/01.
  • 6 Blaes A, Baquet G, Van Praagh E. et al. Physical activity patterns in French youth--from childhood to adolescence--monitored with high-frequency ac- celerometry. American journal of human biology : the official journal of the Human Biology Council 2011; 23 (03) 353-8 Epub 2011/03/30.
  • 7 Böhler T, Wabitsch M, Winkler U. et al. Konsen- suspapier Patientenschulungsprogramme für Kinder und Jugendliche mit Adipositas. wwwdgede/pdf/dge_info/Konsensuspa- pierPSPpdf. 2004
  • 8 Bornstein DB, Beets MW, Byun W. et al. Accelero- meter-derived physical activity levels of pre-schoolers: a meta-analysis. J Sci Med Sport 2011; 14 (06) 504-11 Epub 2011/06/21.
  • 9 Brandstetter S, Klenk J, Berg S. et al. Overweight prevention implemented by primary school teachers: a randomised controlled trial. Obesity facts 2012; 05 (01) 1-11 Epub 2012/03/22.
  • 10 Burgert TS, Taksali SE, Dziura J. et al. Alanine aminotransferase levels and fatty liver in child-hood obesity: associations with insulin resistance, adiponectin, and visceral fat. The Journal of clinical endocrinology and metabolism 2006; 91 (11) 4287-94 Epub 2006/08/17.
  • 11 Caroli M, Argentieri L, Cardone M. et al. Role of television in childhood obesity prevention. International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity 2004; 28 (Suppl. 03) S104-8 Epub 2004/11/16.
  • 12 Chen LJ, Fox KR, Haase A. et al. Obesity, fitness and health in Taiwanese children and adolescents. Eur J Clin Nutr 2006; 60 (12) 1367-75 Epub 2006/06/16.
  • 13 Corder K, Brage S, Ekelund U. Accelerometers and pedometers: methodology and clinical application. Curr Opin Clin Nutr Metab Care 2007; 10 (05) 597-603 Epub 2007/08/19.
  • 14 Deforche B, De Bourdeaudhuij I, D’Hondt E. et al. Objectively measured physical activity, physical activity related personality and body mass index in 6– to 10-yr-old children: a cross-sectional study. Int J Behav Nutr Phys Act 2009; 06: 25 Epub 2009/05/16.
  • 15 Despres JP. Abdominal obesity as important component of insulin-resistance syndrome. Nutrition 1993; 09 (05) 452-9 Epub 1993/09/01.
  • 16 Faiss N, Laux-Schumpp P, Winkler G. Schrittzähler – ein einfaches Instrument zur Steigerung der körperlichen Aktivität?. Ernährung- sumschau 2006; 09: 37-40.
  • 17 Freedson P, Pober D, Janz KF. Calibration of accelerometer output for children. Med Sci Sports Exerc 2005; 37 (Suppl. 11) S523-30 Epub 2005/11/19.
  • 18 Gillum RF. The association of body fat distribution with hypertension, hypertensive heart disease, coronary heart disease, diabetes and cardiovascular risk factors in men and women aged 18–79 years. Journal of chronic diseases 1987; 40 (05) 421-8 Epub 1987/01/01.
  • 19 Gortmaker SL, Must A, Sobol AM. et al. Television viewing as a cause of increasing obesity among children in the United States, 1986–1990. Archives of pediatrics & adolescent medicine 1996; 150 (04) 356-62 Epub 1996/04/01.
  • 20 Heil DP, Bennett GG, Bond KS. et al. Influence of activity monitor location and bout duration on free-living physical activity. Res Q Exerc Sport 2009; 80 (03) 424-33 Epub 2009/10/02.
  • 21 Hinkley T, O’Connell E, Okely AD. et al. Assessing volume of accelerometry data for reliability in pre- school children. Med Sci Sports Exerc 2012; 44 (12) 2436-41 Epub 2012/07/11.
  • 22 Kumahara H, Tanaka H, Schutz Y. Are pedometers adequate instruments for assessing energy expenditure?. Eur J Clin Nutr. 2009 Epub 2009/08/27.
  • 23 Lampert T, Mensink GB, Romahn N. et al. [Physical activity among children and adolescents in Germany. Results of the German Health Interview and Examination Survey for Children and Adolescents (KiGGS)]. Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz 2007; 50 (5–6): 634-42 Epub 2007/05/22. Korperlich-sportliche Aktivitat von Kindern und Jugend- lichen in Deutschland.. Ergebnisse des Kinder- und Jugendgesundheitssurveys (KiGGS).
  • 24 Laurson KR, Eisenmann JC, Welk GJ. et al. Evalu- ation of youth pedometer-determined physical activity guidelines using receiver operator characteristic curves. Prev Med 2008; 46 (05) 419-24 Epub 2008/02/01.
  • 25 Lobstein T, Baur L, Uauy R. Obesity in children and young people: a crisis in public health. Obes Rev 2004; 05 (Suppl. 01) 4-104 Epub 2004/04/21.
  • 26 Maffeis C, Banzato C, Brambilla P. et al. Insulin resistance is a risk factor for high blood pressure re- gardless of body size and fat distribution in obese children. Nutrition, metabolism, and cardiovascular diseases : NMCD 2010; 20 (04) 266-73 Epub 2009/09/15.
  • 27 McNamara E, Hudson Z, Taylor SJ. Measuring activity levels of young people: the validity of pedometers. British medical bulletin 2010; 95: 121-37 Epub 2010/06/22.
  • 28 Nyberg GA, Nordenfelt AM, Ekelund U. et al. Physical activity patterns measured by accelerometry in 6– to 10-yr-old children. Med Sci Sports Exerc 2009; 41 (10) 1842-8 Epub 2009/09/04.
  • 29 Ortega FB, Ruiz JR, Hurtig-Wennlof A. et al. [Physically active adolescents are more likely to have a healthier cardiovascular fitness level independently of their adiposity status. The European youth heart study]. Rev Esp Cardiol 2008; 61 (02) 123-9 Epub 2008/03/28. Los adolescentes fisicamente activos presentan una mayor probabilidad de tener una capacidad cardiovascu- lar saludable independientemente del grado de adiposidad.. The European Youth Heart Study*.
  • 30 Page A, Cooper AR, Stamatakis E. et al. Physical activity patterns in nonobese and obese children assessed using minute-by-minute accelerometry. Int J Obes (Lond) 2005; 29 (09) 1070-6 Epub 2005/05/27.
  • 31 Plasqui G, Westerterp KR. Physical activity assessment with accelerometers: an evaluation against doubly labeled water. Obesity (Silver Spring) 2007; 15 (10) 2371-9 Epub 2007/10/11.
  • 32 Power ML, Schulkin J. Sex differences in fat storage, fat metabolism, and the health risks from obesity: possible evolutionary origins. The British journal of nutrition 2008; 99 (05) 931-40 Epub 2007/11/06.
  • 33 Reinehr T, Wunsch R. Relationships between cardiovascular risk profile, ultrasonographic measurement of intra-abdominal adipose tissue, and waist circumference in obese children. Clin Nutr 2010; 29 (01) 24-30 Epub 2009/07/07.
  • 34 Richardson CR, Brown BB, Foley S. et al. Feasibility of adding enhanced pedometer feedback to nutritional counseling for weight loss. Journal of medical Internet research 2005; 07 (05) e56 Epub 2006/01/13.
  • 35 Rizzo NS, Ruiz JR, Hurtig-Wennlof A. et al. Relationship of physical activity, fitness, and fatness with clustered metabolic risk in children and adolescents: the European youth heart study. J Pediatr 2007; 150 (04) 388-94 Epub 2007/03/27.
  • 36 Rooney BL, Gritt LR, Havens SJ. et al. Growing healthy families: family use of pedometers to increase physical activity and slow the rate of obesity. WMJ : official publication of the State Medical Society of Wisconsin 2005; 104 (05) 54-60 Epub 2005/09/06.
  • 37 Rowlands AV. Accelerometer assessment of physical activity in children: an update. Pediatr Exerc Sci 2007; 19 (03) 252-66 Epub 2007/11/21.
  • 38 Schiel R, Kaps A, Bieber G. et al. Identification of determinants for weight reduction in overweight and obese children and adolescents. Journal of telemedicine and telecare 2010; 16 (07) 368-73 Epub 2010/08/04.
  • 39 Shear CL, Freedman DS, Burke GL. et al. Body fat patterning and blood pressure in children and young adults. The Bogalusa Heart Study. Hypertension 1987; 09 (03) 236-44 Epub 1987/03/01.
  • 40 Song X, Jousilahti P, Stehouwer CD. et al. Comparison of various surrogate obesity indicators as predictors of cardiovascular mortality in four European populations. Eur J Clin Nutr. 2013 Epub 2013/10/24.
  • 41 Stone MR, Rowlands AV, Eston RG. Characteristics of the activity pattern in normal weight and overweight boys. Prev Med 2009; 49 (2–3): 205-8 Epub 2009/07/04.
  • 42 Strong WB, Malina RM, Blimkie CJ. et al. Evidence based physical activity for school-age youth. J Pediatr 2005; 146 (06) 732-7 Epub 2005/06/24.
  • 43 Trinh A, Campbell M, Ukoumunne OC. et al. Physical activity and 3-year BMI change in over- weight and obese children. Pediatrics 2013; 131 (02) e470-7 Epub 2013/01/16.
  • 44 Trost SG. State of the Art Reviews: Measurement of Physical Activity in Children and Adolescents. American Journal of Lifestyle Medicine 2007; 01: 299-314.
  • 45 Trost SG, McIver KL, Pate RR. Conducting accele- rometer-based activity assessments in field-based research. Med Sci Sports Exerc 2005; 37 (Suppl. 11) S531-43 Epub 2005/11/19.
  • 46 Trost SG, Pate RR, Sallis JF. et al. Age and gender differences in objectively measured physical activity in youth. Med Sci Sports Exerc 2002; 34 (02) 350-5 Epub 2002/02/06.
  • 47 Tudor-Locke C, Pangrazi RP, Corbin CB. et al. BMI-referenced standards for recommended pedometer-determined steps/day in children. Prev Med 2004; 38 (06) 857-64 Epub 2004/06/15.
  • 48 van Baak MA, Borghouts LB. Relationships with physical activity. Nutrition reviews 2000; 58 (3 Pt 2): S16-8 Epub 2000/05/17.
  • 49 van der Poorten D, Milner KL, Hui J. et al. Visceral fat: a key mediator of steatohepatitis in metabolic liver disease. Hepatology 2008; 48 (02) 449-57 Epub 2008/07/16.
  • 50 Vincent SD, Pangrazi RP. An examination of the activity patterns of elementary school children. Pediatr Exerc Sci 2002; 14 (04) 432-41.
  • 51 von Schnurbein J, Klenk J, Galm C. et al. Reference values and early determinants of intra-abdominal fat mass in primary school children. Hormone re-search in paediatrics 2011; 75 (06) 412-22 Epub 2011/02/22.
  • 52 Vorwerg Y, Petroff D, Kiess W. et al. Physical activity in 3–6 year old children measured by Sense- Wear Pro(R): direct accelerometry in the course of the week and relation to weight status, media consumption, and socioeconomic factors. PloS one 2013; 08 (04) e60619 Epub 2013/04/11.
  • 53 Wabitsch M, Kunze D. (federführend für die AGA). Konsensbasierte Leitlinie für Diagnostik, Therapie und Prävention der Adipositas im Kindes- und Jugendalter Version 03102013. wwwa-g-ade 2013
  • 54 Wabitsch M, Moss A. et al. Evidenzbasierte Leitlinie Therapie der Adipositas im Kindes- und Jugendalter (S3-Leitlinie). Arbeitsgemeinschaft Adipositas im Kindes- und Jugendalter. wwwa-g-ade 2009;Version 2009.
  • 55 Weiss R, Raz I. Focus on childhood fitness, not just fatness. Lancet 2006; 368 9532 261-2 Epub 2006/07/25.
  • 56 Welk GJ, McClain JJ, Eisenmann JC. et al. Field validation of the MTI Actigraph and BodyMedia armband monitor using the IDEEA monitor. Obesity (Silver Spring) 2007; 15 (04) 918-28 Epub 2007/04/12.
  • 57 Westerterp KR, Plasqui G. Physical activity and human energy expenditure. Curr Opin Clin Nutr Metab Care 2004; 07 (06) 607-13 Epub 2004/11/10.
  • 58 Zwiauer K, Widhalm K, Kerbl B. Relationship between body fat distribution and blood lipids in obese adolescents. International journal of obesity 1990; 14 (03) 271-7 Epub 1990/03/01.