Osteologie 2016; 25(03): 198-203
DOI: 10.1055/s-0037-1619017
Labordiagnostik bei metabolischen Knochenerkrankungen
Schattauer GmbH

Die Rolle der Wnt-Inhibitoren Sklerostin und Dickkopf-1 bei Erkrankungen des Knochens[*]

The role of the Wnt-Inhibitors Sclerostin and Dickkopf-1 in bone disorders
A. Göbel
1   Abteilung für Endokrinologie, Diabetes & Knochenerkrankungen, Medizinische Klinik 3, Medizinische Fakultät der Technischen Universität Dresden, Dresden
,
T.D. Rachner
1   Abteilung für Endokrinologie, Diabetes & Knochenerkrankungen, Medizinische Klinik 3, Medizinische Fakultät der Technischen Universität Dresden, Dresden
,
M. Rauner
1   Abteilung für Endokrinologie, Diabetes & Knochenerkrankungen, Medizinische Klinik 3, Medizinische Fakultät der Technischen Universität Dresden, Dresden
,
L.C. Hofbauer
1   Abteilung für Endokrinologie, Diabetes & Knochenerkrankungen, Medizinische Klinik 3, Medizinische Fakultät der Technischen Universität Dresden, Dresden
2   Deutsches Konsortium für Translationale Krebsforschung (DKTK), Dresden, und Deutsches Krebsforschungszentrum (DKFZ), Heidelberg
3   UniversitätsCentrum für Gesundes Altern, Medizinische Fakultät der Technischen Universität Dresden, Dresden
› Author Affiliations
Further Information

Publication History

eingereicht: 26 April 2016

angenommen: 09 May 2016

Publication Date:
21 December 2017 (online)

Zusammenfassung

Knochen wird durch die koordinierte Aktivität von knochenresorbierenden Osteoklasten sowie von Osteoblasten, die neue Knochenmatrix produzieren, kontinuierlich umgebaut. Ein gestörtes Gleichgewicht zwischen beiden Zelltypen stellt ein Leitmotiv vieler metabolischer Knochenerkrankungen dar. Hierbei fällt dem Wnt-Signalweg eine zentrale Bedeutung zu. Dieser fördert die Osteoblastogenese und wird durch die Wnt-Antagonisten Dickkopf-1 (DKK-1) und Sklerostin feinreguliert, da sie eine hemmende Wirkung auf die Osteoblasten-differenzierung entfalten. Beide Proteine sind zellbiologisch gut charakterisiert und lassen sich auch beim Menschen mithilfe sensitiver Assays nachweisen und als Biomarker bestimmen. Sowohl DKK-1 und Sklerostin werden in aktuellen präklinischen und klinischen Studien als therapeutische Ansatzpunkte für Erkrankungen des Knochens diskutiert, bei denen es zu einem Verlust von Knochengewebe und einem erhöhten Frakturrisiko kommt.

Summary

Bone undergoes continuous remodeling by the tightly coordinated activities of both bone resorbing osteoclasts as well as osteoblasts which produce new mineralized bone matrix. An imbalance of these cell types is a hallmark of numerous metabolic bone disorders. The Wnt pathway plays a key role in bone remodeling by promoting the differentiation of osteoblasts. Dickkopf-1 (DKK-1) and Sclerostin represent two potent inhibitors of the Wnt pathway thereby mediating a finetuning of osteoblastogenesis. The biological function of these proteins is well characterized and both are detectable as biomarkers in humans by sensitive assays. Current preclinical and clinical studies point to the potential therapeutic benefit by targeting DKK-1 and Sclerostin in bone disorders that are accompanied by the loss of bone mass and an increased fracture risk.

* Dieser Beitrag ergänzt das Themenheft “Labor- diagnostik bei metabolischen Knochenerkran- kungen” (Osteologie 4/2015)


 
  • Literatur

  • 1 Canalis E. Wnt signalling in osteoporosis: mechanisms and novel therapeutic approaches. Nat Rev Endocrinol. Nature Publishing Group 2013; 09: 575-583.
  • 2 Hofbauer LC, Rachner TD, Hamann C. From bone to breast and back – the bone cytokine RANKL and breast cancer. Breast Cancer Res 2011; 13: 107.
  • 3 Cadigan KM, Nusse R. Wnt signalling: a common theme in animal development. Genes Dev 1997; 11: 3286-3305.
  • 4 Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013; 19: 179-192.
  • 5 Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone diseases. Gene 2004; 341: 19-39.
  • 6 Kato M, Patel MS, Levasseur R. et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 2002; 157: 303-314.
  • 7 Daoussis D, Andonopoulos AP. The emerging role of Dickkopf-1 in bone biology: is it the main switch controlling bone and joint remodeling?. Semin Arthritis Rheum 2011; 41: 170-177.
  • 8 Boyden LM, Mao J, Belsky J. et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002; 346: 1513-1521.
  • 9 Babij P, Zhao W, Small C. et al. High bone mass in mice expressing a mutant LRP5 gene. J Bone Min Res 2003; 18: 960-974.
  • 10 Ke HZ, Richards WG, Li X, Ominsky MS. Sclerostin and dickkopf-1 as therapeutic targets in bone diseases. Endocr Rev 2012; 33: 747-783.
  • 11 Pinzone JJ, Hall BM, Thudi NK. et al. The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood 2009; 113: 517-525.
  • 12 Li X, Ominsky MS, Niu Q-T. et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 2008; 23: 860-869.
  • 13 Semënov M, Tamai K, He X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem 2005; 280: 26770-26775.
  • 14 Van Bezooijen RL, Ten Dijke P, Papapoulos SE, Löwik CWGM. SOST/sclerostin, an osteocyte-derived negative regulator of bone formation. Cytokine Growth Factor Rev 2005; 16: 319-327.
  • 15 Sutherland MK, Geoghegan JC, Yu C. et al. Sclerostin promotes the apoptosis of human osteoblastic cells: A novel regulation of bone formation. Bone 2004; 35: 828-835.
  • 16 Robling AG, Niziolek PJ, Baldridge LA. et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 2008; 283: 5866-5875.
  • 17 Turner CH, Warden SJ, Bellido T. et al. Mechanobiology of the skeleton. Sci Signal. 2009 02. pt3.
  • 18 Rachner TD, Hadji P, Hofbauer LC. Novel therapies in benign and malignant bone diseases. Pharmacol Ther 2012; 134: 338-344.
  • 19 Neer RM, Arnaud CD, Zanchetta JR. et al. Effect of Parathyroid Hormone 1–34) on Fractures and Bone Mineral Density in Postmenopausal Women With Osteoporosis. N Engl J Med 2001; 344: 1434-1441.
  • 20 Saag KG, Shane E, Boonen S. et al. Teriparatide or Alendronate in Glucocorticoid-Induced Osteoporosis. N Engl J Med 2007; 357: 2028-2039.
  • 21 Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet 2011; 377: 1276-1287.
  • 22 Keller H, Kneissel M. SOST is a target gene for PTH in bone. Bone 2005; 37: 148-158.
  • 23 Clarke BL, Drake MT. Clinical utility of serum sclerostin measurements. Bonekey Rep 2013; 02: 361.
  • 24 Gaudio A, Pennisi P, Bratengeier C. et al. Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J Clin Endocrinol Metab 2010; 95: 2248-2253.
  • 25 McClung MR, Grauer A, Boonen S. et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med 2014; 370: 412-420.
  • 26 Glantschnig H, Fisher JE, Wesolowski G. et al. M-CSF, TNFalpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. Cell Death Differ 2003; 10: 1165-1177.
  • 27 Hadji P, Ziller M, Maskow C. et al. The influence of chemotherapy on bone mineral density, quantitative ultrasonometry and bone turnover in pre-menopausal women with breast cancer. Eur J Cancer 2009; 45: 3205-3212.
  • 28 Hadji P, Aapro MS, Body JJ. et al. Management of aromatase inhibitor-associated bone loss in postmenopausal women with breast cancer: Practical guidance for prevention and treatment. Ann Oncol 2011; 22: 2546-2555.
  • 29 Diarra D, Stolina M, Polzer K. et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med 2007; 13: 156-163.
  • 30 Mariz K, Ingolf J-B, Daniel H. et al. The Wnt inhibitor dickkopf-1: a link between breast cancer and bone metastases. Clin Exp Metastasis 2015; 32 (08) 857-866.
  • 31 Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2002; 02: 584-593.
  • 32 Hofbauer LC, Rachner TD, Coleman RE, Jakob F. Endocrine aspects of bone metastases. Lancet Diabetes Endocrinol 2014; 02: 500-512.
  • 33 Göbel A, Browne AJ, Thiele S. et al. Potentiated suppression of Dickkopf-1 in breast cancer by combined administration of the mevalonate pathway inhibitors zoledronic acid and statins. Breast Cancer Res Treat 2015; 154: 623-631.
  • 34 Tian E, Zhan F, Walker R. et al. The Role of the Wnt-Signalling Antagonist DKK1 in the Development of Osteolytic Lesions in Multiple Myeloma. N Engl J Med 2003; 349: 2438-2494.
  • 35 Qiang YW, Chen Y, Stephens O. et al. Myeloma-derived dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: A potential mechanism underlying osteolytic bone lesions in multiple myeloma. Blood 2008; 112: 196-207.
  • 36 Voorzanger-Rousselot N, Goehrig D, Journe F. et al. Increased Dickkopf-1 expression in breast cancer bone metastases. Br J Cancer 2007; 97: 964-970.
  • 37 Rachner TD, Göbel A, Thiele S. et al. Dickkopf-1 is regulated by the mevalonate pathway in breast cancer. Breast Cancer Res 2014; 16: R20.
  • 38 Bu G, Lu W, Liu CC. et al. Breast cancer-derived Dickkopf1 inhibits osteoblast differentiation and osteoprotegerin expression: Implication for breast cancer osteolytic bone metastases. Int J Cancer 2008; 123: 1034-1042.
  • 39 Mendoza-Villanueva D, Zeef L, Shore P. Metastatic breast cancer cells inhibit osteoblast differentiation through the Runx2/CBFβ-dependent expression of the Wnt antagonist, sclerostin. Breast Cancer Res BioMed Central Ltd 2011; 13: R106.
  • 40 Thudi NK, Martin CK, Murahari S. et al. Dick- kopf-1 (DKK-1) stimulated prostate cancer growth and metastasis and inhibited bone formation in osteoblastic bone metastases. Prostate 2011; 71: 615-625.
  • 41 Rachner TD, Thiele S, Göbel A. et al. High serum levels of Dickkopf-1 are associated with a poor prognosis in prostate cancer patients. BMC Cancer 2014; 14: 649.
  • 42 Clézardin P. Mechanisms of action of bisphosphonates in oncology: a scientific concept evolving from antiresorptive to anticancer activities. Bonekey Rep 2013; 02: 267.
  • 43 Iyer SP, Beck JT, Stewart AK. et al. A Phase IB multicentre dose-determination study of BHQ880 in combination with anti-myeloma therapy and zoledronic acid in patients with relapsed or refractory multiple myeloma and prior skeletal-related events. Br J Haematol 2014; 167: 366-375.
  • 44 García-Martín A, Rozas-Moreno P, Reyes-García R. et al. Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2012; 97: 234-241.
  • 45 Hamann C, Rauner M, Höhna Y. et al. Sclerostin antibody treatment improves bone mass, bone strength, and bone defect regeneration in rats with type 2 diabetes mellitus. J Bone Miner Res 2013; 28: 627-638.
  • 46 Tsourdi E, Rijntjes E, Köhrle J. et al. Hyperthyroidism and Hypothyroidism in Male Mice and Their Effects on Bone Mass, Bone Turnover, and the Wnt Inhibitors Sclerostin and Dickkopf-1. Endocrinology 2015; 156: 3517-3527.
  • 47 Vestergaard P, Mosekilde L. Hyperthyroidism, Bone Mineral, and Fracture Risk – A Meta-Analy- sis. Thyroid 2003; 13: 585-593.