Osteologie 2016; 25(03): 204-211
DOI: 10.1055/s-0037-1619018
Original- und Übersichtsarbeiten
Schattauer GmbH

Ganzkörper-Elektromyostimulation und Sarcopenic Obesity

Ergebnisse der randomisierten kontrollierten FORMOsASarcopenic Obesity StudieWhole-body Electromyostimulation and Sarcopenic ObesityResults of the randomized controlled FORMOsASarcopenic Obesity Study
W. Kemmler
1   Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU)
S. von Stengel
1   Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU)
M. Teschler
1   Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU)
A. Weissenfels
1   Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU)
M. Bebenek
1   Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU)
M. Kohl
2   Abteilung Medical and Life Sciences, Universität Furtwangen
E. Freiberger
3   Institut für Biomedizin des Alterns, Friedrich-Alexander Universität Erlangen- Nürnberg (FAU)
C. Bollheimer
3   Institut für Biomedizin des Alterns, Friedrich-Alexander Universität Erlangen- Nürnberg (FAU)
S. Goisser
3   Institut für Biomedizin des Alterns, Friedrich-Alexander Universität Erlangen- Nürnberg (FAU)
C. Sieber
3   Institut für Biomedizin des Alterns, Friedrich-Alexander Universität Erlangen- Nürnberg (FAU)
L. Seefried
4   Muskuloskelettales Forschungszentrum, Universität Würzburg
F. Jakob
4   Muskuloskelettales Forschungszentrum, Universität Würzburg
K. Engelke
1   Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU)
› Author Affiliations
Further Information

Publication History

eingereicht: 04 June 2016

angenommen nach Revision: 01 August 2016

Publication Date:
21 December 2017 (online)



Ein aufwendiges und intensives Körpertraining zur Therapie der “Sarcopenic Obesity (SO)” kann oder möchte von vielen der älteren Betroffenen nicht mehr durchgeführt werden. Die zeiteffiziente, gelenkschonende und individualisierbare GanzkörperElektromyostimulation (WB-EMS) könnte hier eine geeignete Option darstellen.

Material und Methoden

75 selbstständig lebende Frauen mit einer SO wurden randomisiert einer WB-EMS-Gruppe (n = 25), einer WB-EMS-Gruppe mit proteinreichen Ernährungssupplementen (WB-EMS&P: n = 25) und einer nichttrainierenden Kontroll-Gruppe (KG: n = 25) zugeteilt. Die WB-EMS-Gruppen führten über 26 Wochen einmal je Woche eine niederfrequente WB-EMS-Applikation in liegender/sitzender Position durch. Primäre Studienendpunkte waren appendikuläre skelettale Muskelmasse (ASMM) und Körperfettmasse.


Beide WB-EMS-Gruppen zeigten vergleichbare (p = 0,532), signifikante Verbesserungen (p ≤ 0,003) der ASMM, die sich signifikant (p < 0,001) von den Ergebnissen in der KG (p = 0,050) unterschieden. Keine signifikanten Effekte (p = 0,628) konnten indes für die Körperfettmasse erfasst werden.


Die vorliegende Untersuchung zeigt signifikante Effekte einer WB-EMS- Applikation auf Sarkopeniegrößen, jedoch, im Gegensatz zu vorhergehenden Studien, keine korrespondierenden Effekte auf die Körperfettmasse.



Sarcopenic obesity (SO) is characterized by the combination of low muscle and high fat mass. Physical exercise may prevent or even restore SO, however, sports participation of most elderly people failed to reach corresponding exercise recommendations. The aim of the study was to determine the effect of time efficient and joint-friendly Whole-Body Electromyostimulation (WB-EMS) on SO in community-dwelling women ≥ 70 years with SO.

Material and methods

A randomized controlled trial over 6 months was conducted with community-dwelling women of 70 years and older with SO (skeletal muscle mass index: < 5,75 kg/m2, body-fat > 35 %) living in Erlangen, Germany. 75 eligible women were randomly assigned (1 : 1 : 1) to three study groups (a) WB-EMS (b) WB-EMS and protein-rich supplements (WB-EMS&P) and (c) non-training control (CG). WB-EMS was applied once weekly over 20 min sitting/lying in a supine position using an intermitted EMS-protocol (4 s of EMS, 4 s of rest; 85 Hz, 30 µs, direct impulse-raise) performed with moderate to high intensity. Dietary supplementation consisted of 40 g powder/d (600 kJ) with 56 % protein content (i. e. 22 g/d). Body composition assessments using Dual-Energy x-Ray Absorptiometry (DXA) and functional tests that focussed on the lower limbs (i. e. power and maximum leg strength, chair rising) were conducted. Researchers were blinded with respect to participants’ group affiliation. Primary study endpoints were appendicular skeletal muscle mass (ASMM; kg/m2) and body fat mass (kg). Secondary study endpoints were dynamic maximum leg extensor strength, chair rising test and jumping power.


Intention-to-treat analysis determined a comparable (p = 0,53) increase of ASMM in both WB-EMS groups (WB-EMS: 2.5 ± 2.7 % and WB-EMS&P: 2.0 ± 2.7 %, p ≤ 0.003) compared to baseline (BL). The WB-EMS groups differed significantly (p < 0.001) from the CG which significantly lost ASMM (1.2 ± 3.3 %, p = 0.050). Body fat mass reductions compared to BL of the WBEMS group (−1.0 ± 2.6; p = 0.121) and WBEMS& P group (−1.4 ± 2.1 %, p = 0.021) were slightly more pronounced compared to the CG (−0.8 ± 2.5 %, p = 0.185), however, these effects remained non-significant (p = 0.628) in between-group comparison. Maximum leg-extensor strength as assessed by an isokinetic leg press, chair rising test and jumping height as determined on a force plate comparably increased in both WBEMS groups (p < 0.001 to 0.008) and maintained in the CG. However, corresponding significant effects between groups were determined only for maximum leg extensor strength (p = 0.002).


WB-EMS is a safe and attractive method for increasing muscle mass and functional capacity in this cohort of women ≥ 70 with SO, whereas the effect on body fat is minor. The latter finding, along with the weak results for the more complex chair rising and counter movement jump test, may be referred to the unspecific WB-EMS application. Protein did not increase the effects of WB-EMS, however, the baseline protein consumption was rather high in all subgroups (1.03–1.09 g/kg bodymass/d).

  • Literatur

  • 1 Stenholm S, Harris TB, Rantanen T. et al. Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care 2008; 11 (06) 693-700.
  • 2 Zamboni M, Mazzali G, Fantin F. et al. Sarcopenic obesity: a new category of obesity in the elderly. Nutr Metab Cardiovasc Dis 2008; 18 (05) 388-395.
  • 3 Milte R, Crotty M. Musculoskeletal health, frailty and functional decline. Best Pract Res Clin Rheumatol 2014; 28 (03) 395-410.
  • 4 Malafarina V, Uriz-Otano F, Iniesta R, Gil-Guerrero L. Sarcopenia in the elderly: diagnosis, physiopathology and treatment. Maturitas 2012; 71 (02) 109-114.
  • 5 Börjesson M, Hellenius ML, Jansson E. et al. Physical Activity in the Prevention and Treatment of Disease. (Sweden) PAf PA, ed. Stockholm: Swedish Institute of Health; 2010
  • 6 Pedersen BK, Saltin B. Evidence for prescribing exercise as a therapy in chronic disease. Scand J Med Sci Sports 2006; 16 (Suppl. 01) 3-63.
  • 7 Chodzko-Zajko WJ, Proctor DN, Fiatarone MASingh. et al. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc 2009; 41 (07) 1510-1530.
  • 8 AHHS. Physical activity guidelines for Americans. Okla Nurse. 2008; 53 (04) 25.
  • 9 Rütten A, Abu-Omar K, Lampert T, Ziese T. Körperliche Aktivität [Physical Activity]. Report. Berlin: Statistisches Bundesamt, 2005.;
  • 10 Fritzsche D, Fruend A, Schenk S. et al. Elektromyostimulation (EMS) bei kardiologischen Patienten. Wird das EMS-Training bedeutsam für die Sekundärprävention? Herz 2010; 35 (01) 34-40.
  • 11 Kemmler W, Teschler M, Von Stengel S. Effekt von Ganzkörper-Elektromyostimulation – “A series of studies”. Osteologie 2015; 23 (01) 20-29.
  • 12 Kemmler W, Teschler M, Weissenfels A. et al. Effects of Whole-Body Electromyostimulation versus High-Intensity Resistance Exercise on Body Composition and Strength: A Randomized Controlled Study. Evid Based Complement Alternat Med 2016; 2016: 9236809.
  • 13 Janssen I, Baumgartner RN, Ross R. et al. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol 2004; 159 (04) 413-421.
  • 14 WHO. Physical status: the use and interpretation of anthropometry. Report of a WHO expert committee. Geneva: 1995
  • 15 Borg E, Kaijser L. A comparison between three rating scales for perceived exertion and two different work tests. Scand J Med Sci Sports 2006; 16 (01) 57-69.
  • 16 Koch AJ, Pereira R, Machado M. The creatine kinase response to resistance exercise. J Musculoskelet Neuronal Interact 2014; 14 (01) 68-77.
  • 17 Guralnik JM, Simonsick EM, Ferrucci L. et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol 1994; 49 (02) M85-M94.
  • 18 Kemmler W, Riedel H. Körperliche Belastung und Osteoporose – Einfluß einer 10monatigen Interventionsmaßnahme auf ossäre und extraossäre Risikofaktoren einer Osteoporose. Dtsch Z Sportmed 1998; 49: 270-277.
  • 19 Fahrenberg J, Myrtek M, Wilk D, Kreutel K. [Multimodal assessment of life satisfaction: a study of patients with cardiovascular diseases]. Psychother Psychosom Med Psychol 1986; 36 (11) 347-354.
  • 20 Max-Rubner-Institut. German Nutrient Database – Bundeslebensmittelschlüssel (BLS) version 3.01. In: Food FRIoNa, editor. Kulmbach: 2010
  • 21 Kemmler W, von Stengel S. Whole-body electromyostimulation as a means to impact muscle mass and abdominal body fat in lean, sedentary, older female adults: subanalysis of the TEST-III trial. Clin Interv Aging 2013; 08: 1353-1364.
  • 22 Honaker J, King G, Blackwell M. Amelia II: A program for missing data JSS. 2011; 45 (07) 1-47.
  • 23 Alison P. Missing data. Thousand Oaks: Sage Publication; 2002
  • 24 Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat 1979; 06 (01) 65-70.
  • 25 Kemmler W, Schliffka R, Mayhew JL, von Stengel S. Effects of Whole-Body-Electromyostimulation on Resting Metabolic Rate, Anthropometric and Neuromuscular Parameters in the Elderly. The Training and ElectroStimulation Trial (TEST). J Strength Cond Res 2010; 24 (07) 1880-1886.
  • 26 Kemmler W, Von Stengel S, Bebenek M. Effekte eines Ganzkörper-Elektromyostimulations-Trainings auf die Knochendichte eines Hochrisikokollektivs für Osteopenie. Eine randomisierte Studie mit schlanken und sportlich inaktiven Frauen. Osteologie 2013; 22 (02) 121-128.
  • 27 Küpper C. Mangelernährung im Alter. Ernährungs Umschau 2010; 10 (04) 204-211.
  • 28 Bauer J, Biolo G, Cederholm T. et al. Evidencebased recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc 2013; 14 (08) 542-559.
  • 29 Nowson C, O’Connell S. Protein Requirements and Recommendations for Older People: A Review. Nutrients 2015; 07 (08) 6874-6899.
  • 30 Tipton KD. Protein for adaptation to exercise training. EJSS 2008; 08 (02) 107-118.
  • 31 Kemmler W, Teschler M, Bebenek M, von Stengel S. [(Very) high Creatinkinase concentration after exertional whole-body electromyostimulation application: health risks and longitudinal adaptations]. Wien Med Wochenschr 2015; 165 (21) 427-435.
  • 32 Wu G. Dietary protein intake and human health. Food Funct. 2016 07. 1251-1265 [Epub ahead of print].
  • 33 Kemmler W, Von Stengel S, Engelke K. et al. Prevalence of Sarcopenic Obesity in Germany using Established Definitions. Baseline data of the FORMOsA Study. Osteo Int 2015; 27 (01) 275-281.
  • 34 Cruz-Jentoft AJ, Baeyens JP, Bauer JM. et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010; 39 (04) 412-423.
  • 35 Fielding RA, Vellas B, Evans WJ. et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 2011; 12 (04) 249-256.
  • 36 Studenski SA, Peters KW, Alley DE. et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 2014; 69 (05) 547-558.
  • 37 Kemmler W, von Stengel S, Engelke K. et al. Exercise effects on bone mineral density, falls, coronary risk factors, and health care costs in older women: the randomized controlled senior fitness and prevention (SEFIP) study. Arch Intern Med 2010; 170 (02) 179-185.
  • 38 Schafer I, von Leitner EC, Schon G. et al. Multimorbidity patterns in the elderly: a new approach of disease clustering identifies complex interrelations between chronic conditions. PLoS One 2010; 05 (12) e15941.
  • 39 Kemmler W, Weineck J, Kalender WA, Engelke K. The effect of habitual physical activity, non-athletic exercise, muscle strength, and VO2max on bone mineral density is rather low in early postmenopausal osteopenic women. J Musculoskelet Neuronal Interact 2004; 04 (03) 325-334.
  • 40 Fritz S, Lusardi M. White paper: “walking speed: the sixth vital sign”. J Geriatr Phys Ther 2009; 32 (02) 46-49.