Hamostaseologie 2005; 25(01): 33-38
DOI: 10.1055/s-0037-1619645
Original Article
Schattauer GmbH

Integrin-mediated leukocyte adhesive interactions

Regulation by haemostatic factorsIntegrin-vermittelte adhäsive Interaktionen von Leukozyten: Regulation durch hämostatische Faktoren
T. Chavakis
1   Department of Medicine I, University Hospital, Heidelberg
,
K. T. Preissner
2   Institute for Biochemistry Medical Faculty, University Giessen, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
27 December 2017 (online)

Summary

Leukocyte recruitment to sites of inflammation, infection or vascular injury is a complex event that is orchestrated by a tightly coordinated sequence of interactions between leukocytes and cells of the vessel wall, especially endothelial cells. These interactions are controlled by the expression and activation of various adhesion receptors and protease systems.

This review will focus on novel aspects of the regulation of integrin-dependent leukocyte adhesion by haemostatic factors. Here, so-called non-haemostatic properties of endogenous proteins such as high molecular weight kininogen, urokinase receptor, urokinase, as well as plasminogen and its cleavage product angiostatin in leukocyte adhesion and transmigration will be summarized. The crosstalk between haemostatic factors and inflammatory reactions may contribute to a better understanding of inflammatory vascular disorders and to the development of novel therapeutical concepts.

Zusammenfassung

Die Rekrutierung von Leukozyten in den Ort der Entzündung, Infektion oder Gefäßverletzung ist ein komplizierter Prozess, der von einer streng koordinierten Sequenz von Interaktionen zwischen Leukozyten und gefäßwandständigen Zellen, insbesondere Endothelzellen, kontrolliert wird. Diese Interaktionen werden durch die Expression und Aktivierung von Adhäsionsrezeptoren und von proteolytischen Systemen reguliert.

Im diesem Artikel werden neue Aspekte der Regulation der Integrin-abhängigen Leukozytenadhäsion durch hämostatische Faktoren präsentiert. So genannte nicht-hämostatische Eigenschaften von endogenen Proteinen (z. B. hochmolekulares Kininogen, Urokinaserezeptor, Urokinase sowie Plasminogen und sein Spaltprodukt Angiostatin) werden zusammengefasst und ihre Rolle in der Leukozytenadhäsion und -transmigration wird beschrieben. Die Interaktion zwischen hämostatischen Faktoren und inflammatorischen Reaktionen wird eventuell zu einem besseren Verständnis von inflammatorischen Gefäß-erkrankungen führen und könnte dadurch die Entwicklung neuer therapeutischer Konzepte ermöglichen.

 
  • References

  • 1 Albrecht S, Magdolen V, Herzog U. et al. Soluble tissue actor interferes with angiostatin-mediated inhibition of endothelial cell proliferation by lysine-specific interaction with plasminogen kringle domains. Thromb Haemost 2002; 88: 1054-9.
  • 2 Anderson DC, Springer TA. Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins. Ann Rev Med 1987; 38: 175-94.
  • 3 Andreasen PA, Egelund R, Petersen HH. The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci 2000; 57: 25-40.
  • 4 Behrendt N, Stephens RW. (Titel??). Fibrinol Proteol 1998; 12: 191-204.
  • 5 Benelli R, Morini M, Carrozzino F. et al. Neutrophils as a key cellular target for angiostatin: implications for regulation of angiogenesis and inflammation. FASEB J 2002; 16: 267-9.
  • 6 Bergers G, Brekken R, McMahon G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000; 2: 737-44.
  • 7 Borregaard N, Cowland JB. Granules of the human neutrophilic polymorpho-nuclear leukocyte. Blood 1997; 89: 3503-21.
  • 8 Bradford HN, DeLa Cadena RA, Kunapuli SP. et al. Human kininogens regulate thrombin binding to platelets through the glycoprotein Ib-IX-V complex. Blood 1997; 90: 1508-15.
  • 9 Buschmann I, Heil M, Jost M. et al. Influence of inflammatory cytokines on arteriogenesis. Microcirculation 2003; 10: 371-9.
  • 10 Cassatella MA. Neutrophil-derived proteins: selling cytokines by the pound. Adv Immunol 1999; 73: 369-509. (¦ Seitenzahlen?)
  • 11 Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules. Blood 1994; 84: 2068-101.
  • 12 Chavakis T, Preissner KT, Santoso S. Leukocyte trans-endothelial migration: JAMs add new pieces to the puzzle. Thromb Haemost 2003; 89: 13-7.
  • 13 Chavakis T, Kanse SM, May AE. et al. Haemostatic factors occupy new territory: the role of the urokinase receptor system and kininogen in inflammation. Biochem Soc Trans 2002; 30: 168-73.
  • 14 Chavakis T, May AE, Preissner KT. et al. Molecular mechanisms of zinc-dependent leukocyte adhesion involving the urokinase receptor and beta2-integrins. Blood 1999; 93: 2976-83.
  • 15 Chavakis T, Athanasopoulos A, Rhee JS. et al. Angiostatin is a novel anti-inflammatory factor by inhibiting leukocyte recruitment. Blood. 2004 (Epub ahead of print)
  • 16 Chavakis T, Kanse SM, Lupu F. et al. Different mechanisms define the antiadhesive function of high molecular weight kininogen in integrin- and urokinase receptor-dependent interactions. Blood 2000; 96: 514-22.
  • 17 Chavakis T, Kanse SM, Pixley RA. et al. Regulation of leukocyte recruitment by polypeptides derived from high molecular weight kininogen. FASEB J 2001; 15: 2365-76.
  • 18 Chavakis T, Santoso S, Clemetson KJ. et al. High molecular weight kininogen regulates plateletleukocyte interactions by bridging Mac-1 and glycoprotein Ib. J Biol Chem 2003; 278: 45375-81.
  • 19 Chavakis T, Preissner KT. Potential pharmacological applications of the antithrombotic molecule high molecular weight kininogen. Curr Vasc Pharmacol 2003; 1: 59-64.
  • 20 Chavakis T, Boeckel N, Santoso S. et al. Inhibition of platelet adhesion and aggregation by a defined region (Gly-486-Lys-502) of high molecular weight kininogen. J Biol Chem 2002; 277: 23157-64.
  • 21 Chavakis T, Pixley RA, Isordia-Salas I. et al. A novel antithrombotic role for high molecular weight kininogen as inhibitor of plasminogen activator inhibitor-1 function. J Biol Chem 2002; 277: 32677-82.
  • 22 Colman RW, Schmaier AH. Contact system: a vascular biology modulator with anticoagulant, profibrinolytic, antiadhesive, and proinflammatory attributes. Blood 1997; 90: 3819-43.
  • 23 Colman RW, Pixley RA, Najamunnisa S. et al. Binding of high molecular weight kininogen to human endothelial cells is mediated via a site within domains 2 and 3 of the urokinase receptor. J Clin Invest 1997; 100: 1481-7.
  • 24 Diacovo TG, de Fougerolles AR, Bainton DF. et al. A functional integrin ligand on the surface of platelets: intercellular adhesion molecule-2. J Clin Invest 1994; 94: 1243-51.
  • 25 Ebnet K, Suzuki A, Ohno S. et al. Junctional adhesion molecules (JAMs): more molecules with dual functions?. J Cell Sci 2004; 117: 19-29.
  • 26 Etzioni A, Doerschuk CM, Harlan JM. Of man and mouse: leukocyte and endothelial adhesion molecule deficiencies. Blood 1999; 94: 3281-8.
  • 27 Feng D, Nagy JA, Pyne K. et al. Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J Exp Med 1998; 187: 903-15.
  • 28 Gahmberg CG. Leukocyte adhesion: CD11/CD18 integrins and intercellular adhesion molecules. Curr Opin Cell Biol 1997; 9: 643-50.
  • 29 Harder T, Simons K. Caveolae. DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr Opin Cell Biol 1997; 9: 534-42.
  • 30 Hasan AAK, Cines DB, Herwald H. et al. Mapping the cell binding site on high molecular weight kininogen domain 5. J Biol Chem 1995; 270: 19256-61.
  • 31 Hasan AAK, Zisman T, Schmaier AH. Identification of cytokeratin 1 as a binding protein and presentation receptor for kininogens on endothelial cells. Proc Natl Acad Sci USA 1998; 95: 3615-20.
  • 32 Herwald H, Dedio J, Kellner R. et al. Isolation and characterization of the kininogenbinding protein p33 from endothelial cells:Identity with the gC1q receptor. J Biol Chem 1996; 271: 13040-7.
  • 33 Herwald H, Hasan AAK, GodovacZimmermann J. et al. Identification of an endothelial cell binding site on kininogen domain D3. J Biol Chem 1995; 270: 14634-42.
  • 34 Horejsi V, Drbal K, Cebecauer M. et al. GPI-microdomains: a role in signalling via immunoreceptors. Immunol Today 1999; 20: 356-61.
  • 35 Liao F, Ali J, Greene T. et al. Soluble domain 1 of platelet-endothelial cell adhesion molecule (PECAM) is sufficient to block transendothelial migration in vitro and in vivo. J Exp Med 1997; 185: 1349-57.
  • 36 Lin Y, Harris RB, Yan W. et al. High molecular weight kininogen peptides inhibit the formation of kallikrein on endothelial cell surfaces and subsequent urokinase-dependent plasmin formation. Blood 1997; 90: 690-7.
  • 37 Lishko VK, Novokhatny VV, Yakubenko VP. et al. Characterization of plasminogen as an adhesive ligand for integrins alphaMbeta2 (Mac-1) and alpha5beta1 (VLA-5). Blood 2004; 104: 719-26.
  • 38 Maecker HT, Todd SC, Levy S. The tetraspanin superfamily: molecular facilitators. FASEB J 1997; 11: 428-42.
  • 39 Marcus AJ. Thrombosis and inflammation as multicellular processes: significance of cell-cell interactions. Semin Hematol 1994; 31: 261-9.
  • 40 May AE, Kanse SM, Lund LR. et al. Urokinase receptor (CD87) regulates leukocyte recruitment via beta 2 integrins in vivo. J Exp Med 1998; 188: 1029-37.
  • 41 McEver RP. Adhesive interactions of leukocytes, platelets, and the vessel wall during hemostasis and inflammation. Thromb Haemost 2001; 86: 746-56.
  • 42 Milne DB, Ralston NV, Wallwork JC. Zinc content of cellular components of blood: methods for cell separation and analysis evaluated. Clin Chem 1985; 31: 65-9.
  • 43 Moulton KS, Vakili K, Zurakowski D. et al. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci. USA 2003; 100: 4736-41.
  • 44 Muller WA. Leukocyte-endothelial cell interactions in the inflammatory response. Lab Invest 2002; 82: 521-33.
  • 45 O’Reilly MS, Holmgren L, Chen C. et al. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 1996; 2: 689-92.
  • 46 O’Reilly MS, Holmgren L, Shing Y. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79: 315-28.
  • 47 Ossowski L, Aguirre-Ghiso JA. Urokinase receptor and integrin partnership: coordination of signaling for cell adhesion, migration and growth. Curr Opin Cell Biol 2000; 12: 613-20.
  • 48 Petty HR, Todd RF. Integrins as promiscuous signal transduction devices. Immunol Today 1996; 17: 209-12.
  • 49 Pluskota E, Soloviev DA, Plow EF. Convergence of the adhesive and fibrinolytic systems: recognition of urokinase by integrin aMß2 as well as by the urokinase receptor regulates cell adhesion and migration. Blood 2003; 101: 1582-90.
  • 50 Pluskota E, Soloviev DA, Bdeir K. et al. Integrin aMß2 orchestrates and accelerates plasminogen activation and fibrinolysis by neutrophils. J Biol Chem 2004; 279: 18063-72.
  • 51 Preissner KT, Kanse SM, May AE. Urokinase receptor: a molecular organizer in cellular communication. Curr Opin Cell Biol 2000; 12: 621-8.
  • 52 Rebuck JW. The skin window as a monitor of leukocytic functions in contact activation factor deficiencies in man. Am J Clin Pathol 1983; 79: 405-13.
  • 53 Rhee JS, Black M, Schubert U. et al. The functional role of blood platelet components in angiogenesis. Thromb Haemost 2004; 92: 394-402.
  • 54 Santoso S, Sachs UJ, Kroll H. et al. The junctional adhesion molecule 3 (JAM-3) on human platelets is a counterreceptor for the leukocyte integrin Mac-1. J Exp Med 2002; 196: 679-91.
  • 55 Scapini P, Nesi L, Morini M. et al. Generation of biologically active angiostatin kringle 1–3 by activated human neutrophils. J Immunol 2002; 168: 5798-804.
  • 56 Schaper W, Scholz D. Factors regulating arteriogenesis. Arterioscler Thromb Vasc Biol 2003; 23: 1143-51.
  • 57 Schenkel AR, Mamdouh Z, Chen X. et al. CD99 plays a major role in the migration of monocytes through endothelial junctions. Nat Immunol 2002; 3: 143-50.
  • 58 Sim BK. Angiostatin and endostatin: endothelial cell-specific endogenous inhibitors of angiogenesis and tumor growth. Angiogenesis 1998; 2: 37-48.
  • 59 Simon DI, Chen CP, Xu H. et al. Platelet glycoprotein Iba is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Exp Med 2000; 192: 193-204.
  • 60 Simon DI, Rao NK, Xu H. et al. Mac-1 (CD11b/CD18) and the urokinase receptor (CD87) form a functional unit on monocytic cells. Blood 1996; 88: 3185-94.
  • 61 Simon DI, Wei Y, Zhang L. et al. Identification of a urokinase receptor-integrin interaction site. Promiscuous regulator of integrin function. J Biol Chem 2000; 275: 10228-34.
  • 62 Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76: 301-14.
  • 63 Stewart M, Thiel M, Hogg N. Leukocyte integrins. Curr Opin Cell Biol 1995; 7: 690-6.
  • 64 Vinante F, Marchi M, Rigo A. et al. Granulocytemacrophage colony-stimulating factor induces expression of heparin-binding epidermal growth factor-like growth factor/diphtheria toxin receptor and sensitivity to diphtheria toxin in human neutrophils. Blood 1999; 94: 3169-77.
  • 65 Wachtfogel YT, DeLa Cadena RA, Kunapuli SP. et al. High molecular weight kininogen binds to Mac1 on neutrophils by its heavy chain (domain 3) and its light chain (domain 5). J Biol Chem 1994; 269: 19307.
  • 66 Waldmann R, Abraham JP, Rebuck JW. et al. Fitzgerald factor: a hitherto unrecognised coagulation factor. Lancet 1975; 1: 949-51.
  • 67 Weber C, Springer TA. Neutrophil accumulation on activated, surface-adherent platelets in flow is mediated by interaction of Mac-1 with fibrinogen bound to aIIbß3 and stimulated by platelet-activating factor. J Clin Invest 1997; 100: 2085-93.
  • 68 Zhang JC, Claffey K, Sakthivel R. et al. Two-chain high molecular weight kininogen induces endothelial cell apoptosis and inhibits angiogenesis: partial activity within domain 5. FASEB J 2000; 14: 2589-600.