Hamostaseologie 2005; 25(02): 175-182
DOI: 10.1055/s-0037-1619650
Original Article
Schattauer GmbH

Pathophysiologische Grundsätze bei Sepsis

Basics in the pathophysiology of sepsis
U. Trappe
1   Charité, Campus Virchow-Klinikum, Berlin
,
H. Riess
1   Charité, Campus Virchow-Klinikum, Berlin
› Author Affiliations
Further Information

Publication History

Publication Date:
27 December 2017 (online)

Zusammenfassung

Präklinische und klinische Untersuchungen der vergangenen Jahre erweiterten das pathophysiologische Verständnis der bei Patienten mit schwerer Sepsis ablaufenden Störungen deutlich . Dabei wurde deutlich, dass die den septischen Krankheitsbildern zugrunde liegende Infektion im engeren Sinne für die Schwere und ungünstige Prognose der Sepsis weniger verantwortlich ist. Vielmehr ist es die außer Kontrolle geratene Reaktion des Organismus auf diese Infektion, die sich bei nicht (mehr) lokalisierter Infektion in Form einer im Wesentlichen Zytokin-vermittelten Entzündungsreaktion dem systemischen inflammatorischen Response-Syndrom mit seinen Folgen widerspiegelt.

Die im Rahmen dieses Syndroms freigesetzten Mediatoren, z.T. in Zusammenwirkung mit Produkten aus infektiösen Mikroorganismen, führen auch zu einer systemischen Aktivierung der Hämostase. Die Aktivierung von Monozyten/Makrophagen sowie die des Endothels stehen dabei im Zentrum des pathophysiologischen Modells. Die davon ausgehende Aktivierung von plasmatischen Kaskadensystemen betreffen auch Gerinnungs-und Fibrinolysesystem, wobei die bei Sepsis beobachtete Gerinnungsaktivierung und Fibrinolysehemmung ihrerseits mit Leukozyten und Endothel interagiert und zur zunehmenden Schädigung der Mikrozirkulation beiträgt. Als deren klinisches Korrelat können Organdysfunktionszustände aufgefasst werden. Es kommt zu einem individuell unterschiedlichen Nebeneinander von überschießender Fibrinbildung, Faktoren-, Inhibitoren-und Thrombozytenverbrauch sowie Störungen des Fibrinolysesystems. Klinisch kann dies neben Organdysfunktionen zu einer disseminierten intravasalen Gerinnung, z.T. mit Blutungskomplikationen, führen.

Summary

Within the recent years preclinical and clinical investigations to a great extend increased the pathophysiological understanding what is going on in patients with severe sepsis. It became evident, that not the initiating infection by itself is the main reason for the severeness and limited prognosis in sepsis. More important is the unbalanced reaction of the patient's organism to this infection, which is reflected in a mainly cytokine driven inflammation, the so called systemic inflammatory response syndrome, with its consequences.

In the context of this syndrome released mediators, in part together with toxins from infectious microorganisms, result in a systemic activation of haemostasis. In the centre of our pathophysiologic model are the activations of the monocyte/macrophage-system and of the endothelium. This results in the activation of plasmatic cascades including the coagulation and fibrinolysis systems. The observed activation of haemostasis and inhibition of fibrinolysis in patients with sepsis by themselves interact with leukocytes and endothelium and play an important role in the progressive derangement of microcirculation. This is clinically reflected in organ dysfunctions. Within a single individual patient there is increased fibrin formation, decreases in coagulation factors, inhibitors and platelets, as well as defects of the fibrinolytic system in parallel that may clinically result in disseminated intravascular coagulation with the risk of bleeding complications in addition to organ dysfunctions.

 
  • Literatur

  • 1 Aird WC. Vascular bed-specific hemaostasis: role of endothelium in sepsis pathogenesis. Crit Care Med 2001; 29: 28-35.
  • 2 Bajzar L, Nesheim M, Tracy PB. The profibrinolytic effect of activated protein C in clots formed from plasma is TAFI-dependent. Blood 1996; 88: 134-9.
  • 3 Bernard GR, Vincent JL, Laterrre PF. et al. Efficacy and safety of recombinant human activated protein C for severe sepis. N Engl J Med 2000; 10: 699-709.
  • 4 Bone RC, Balk RA, Cerra FB. et al. Definiton for Sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 1992; 101: 1644-55.
  • 5 Bone RC, Fisher Jr, CJ, Clemmer TP. et al. Sepsis Syndrome: a valid clinical entitiy. Crit Care Med 1989; 17: 389.
  • 6 Bone RC, Grodzin CJ, Balk RA. Sepsis: a new hypothesis for pathogenesis of the disease process. Chest 1997; 112: 235-43.
  • 7 Brun-Buisson C for the French ICU Group for Sever Sepsis. Incidence, risk factors, and outcome of severe sepsis and septic shock in adults: a multicenter prospective study in intensive care units. JAMA 1995; 274: 968-74.
  • 8 Camerer E, Kolsto AB, Prydz H. Cell biology of tissue factor, the principal initiator of blood coagulation. Thromb Res 1996; 81: 1-41.
  • 9 Carvalho AC, Freeman NJ. How coagulation defects alter outcome in sepsis. Survival may depend on reversing procoagulant conditions. J Crit Illness 1994; 9: 51-75.
  • 10 Creasey AA. New potential therapeutic modalities: tissue factor pathway inhibitor. Sepsis 2000; 3: 173-82.
  • 11 Dellinger RP, Carlet JM, Masur H. Surviving Sepsis Campaign guidelines for management of severe sepis and septic shock. Crit Care Med 2004; 32: 858-73.
  • 12 Dhainaut JF, Yan SB, Joyce DE. et al. Treatment effects of drotrecobin alfa (activated) in patients with severe sepsis with or withaout overt disseminated intravascular coagulation. J Thromb Haemost 2004; 2: 1924-33.
  • 13 Dhainaut JF, Yan SB, Margolis BD. et al. PROWESS Sepsis Study Group. Drotrecogin alfa (activated) (recombiant human activated protein C) reduces host coagulopathy response in patients with severe sepsis. Thromb Haemost 2003; 90: 642-53.
  • 14 Eichacker PQ, Parent C, Kalil A. et al. Risk and the efficacy of anti-inflammatory agents: retrospective and confirmatory studies of sepsis. Am J Respir Crit Care Med 2002; 166: 1197-205.
  • 15 Enkhbaatar P, Okajima K, Murakami K. et al. Recombinant tissue factor pathway inhibitor reduces lipopolysaccaride-induced pulmonary vascular injury by inhibiting leukocyte activation. Am J Respir Crit Care Med 2000; 162: 1752-9.
  • 16 Esmon CT. Crosswalk between inflammation and thrombosis. Maturitas 2004; 47: 305-14.
  • 17 Esmon CT. Inflammation and thrombosis. Mutual regulation by protein C. Immunologist 1998; 6: 84-9.
  • 18 Esmon CT. Protein C pathway in sepsis. Ann Med 2002; 34: 589-605.
  • 19 Faust SN, Levin M, Harrison OB. et al. Dysfunction of endothelial protein C activation in severe meningococcal sepsis. New Eng J Med 200; 6: 408-16.
  • 20 Fourrier F, Chopin c, Huart JJ. et al. Double-blind, placebo-controlled trial of antithrombin III concentrates in septic shock with disseminated intravascular coagulation. Chest 1993; 104: 882-8.
  • 21 Hack CE, Zeerkeder S. The endothelium in sepsis: source of and a target for inflammation. Crit Care Med 2001; 29: S21-7.
  • 22 Hancock WW, Grey ST, Hau L. et al. Binding of activated protein C to a specific receptor on human mononuclear phagocytes inhibits intracellular calcium signaling and monocyte-dependent proliferative responses. Transplantation 1995; 60: 1525-32.
  • 23 Hartman DL, Bernard GR, Rosenfeld BA. et al. Protein C activitiy at baseline predicts development of shock and 28 day mortalitiy in patients with severe sepsis. Int Care Med 1998; 24: 1-204.
  • 24 Hermans PW, Hibbert ML, Booy R. et al. 4G/5G promoter polymorphism in the plasminogen-activator-inhibitor 1 gene and outcome of menigococcal disease. Lancet 1999; 354: 556-60.
  • 25 Hesselvik JF, Blomback M, Brodin B. et al. Coagulation, fibrinlolysis, and kallikrein systems in sepsis: relation to outcome. Crit Care Med 1989; 17: 724-33.
  • 26 Hoffmann JN, Vollmar B, Inthorn D. et al. The thrombin antagonist hirudin fails to inhibit endotoxin-induced leukocyte/ial cell interaction and microvascular perfusion failure. Shock 2000; 14: 528-34.
  • 27 Hörner C, Bouchon A, Bierhaus A. et al. Bedeutung der angeborenen Immunantwort in der Sepsis. Anaesthesist 2004; 53: 10-28.
  • 28 Jaber BL, Rao M, Guo D. et al. Cytokine gene parameter polymorphisms and mortality in acute renal failure. Cytokine 2004; 25: 212-9.
  • 29 Jagneux T, Taylor DE, Kantrow SP. Coagulation in Sepis. Am J Med Scien 2004; 328: 196-204.
  • 30 Jordan RE, Nelson RM, Kilpatrick J. et al. Inactivation of human antithrombin by neutrophil elastase: Kinetics of the heparin-dependent reaction. J Biol Chem 1989; 264: 10493-500.
  • 31 Joyce DE, Grinell BW. Recombinant human activated protein C attenuates the inflammatory response in endothelium and monocytes by modulating nuclear factor-kappaB. Crit Care Med 2002; 30: S288-93.
  • 32 Kidokoro A, Iba T, Fukunaga M. et al. Alterations in coagulation and fibrinolysis during sepsis. Shock 1996; 5: 223-8.
  • 33 Kinasewitz GT, Yan SB, Basson B. et al. Universal changes in biomarkers of coagulation and inflammation occur in patients with severe sepsis, regardless of causative micro-organism [ISRCTN74215569]. Crit Care 2004; 8: R82-90.
  • 34 Levi M, ten Care H, van der Pol T. et al. Pathogenesis of disseminated intravascular coagulopathy in sepsis. JAMA 1993; 270: 975-9.
  • 35 Levi M, ten Cate H, van der PT. Endothelium: interface between coagulation and inflammation. Crit Care Med 2002; 30: S220-4.
  • 36 Levi M, van der Poll PT, ten Cate H. et al. The cytokine-mediated imbalance between coagulant and anticoagulant mechanisms in sepsis and endotoxenia. Eur J Clin Invest 1997; 27: 3-9.
  • 37 Liaw PC, Esmon CT, Kahnamoui K. et al. Patients with severe sepsis vary markedly in their ability to generate activated protein C. Blood 2004; 104: 3958-64.
  • 38 Lorente JA, Garcia-Frade LJ, Landin L. et al. Time course of hemostatic abnormalities in sepsis and its relation to outcome. Chest 1993; 103: 1536-42.
  • 39 Menges T, Herman PW, Little SG. et al. Plasminogen-activator-inhibitor1 4G/5G promoter polymorphism and prognosis of severly injured patients. Lancet 2001; 357: 1096-7.
  • 40 Panacek EA, Marshall JC, Albertson TE. et al. Efficacy and safety of the monoclonal anti-tumor necrosis factor antibody F (ab’)2 fragment of afelimomab in patients with severe sepsis and elevated interleukin-6 levels. Crit Care Med 2004; 32: 2173-82.
  • 41 Park CT, Creasey AA, Wright SD. Tissue factor pathway inhibitor blocks cellular effects of endotoxin by binding to endotoxub and interfering with transfer to CD14. Blood 1997; 89: 4268-74.
  • 42 Rice TW, Bernard GR. Therapeutic Intervention and targets for sepsis. Ann Rev Med 2005; 56: 225-48.
  • 43 Riewald M, Riess H. Treatment options for clinically recognized disseminated intravascular coagulation. Sem Thromb Hemost 2000; 24: 53-9.
  • 44 Van Deventer SJ, Buller HR, ten Cate JW. et al. Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood 1990; 96: 2520-6.
  • 45 Vervloet MG, Thijs LG, Hack CE. Derangements of coagulation and fibrinolysis in critically ill patients with sepsis and septic shock. Semin Thromb Hemost 1998; 24: 33-44.
  • 46 Volk HD, Reinke P, Docke WD. Clinical aspects: from systemic inflammation to „immunoparalysis“. Chem Immunol 2000; 74: 162-77.
  • 47 Yan SB, Helterbrand JD, Hartman DL. et al. Low levels of protein C are associated with poor outcomes in severe sepsis. Chest 2001; 120: 915-22.