Hamostaseologie 2005; 25(03): 259-266
DOI: 10.1055/s-0037-1619659
Original Article
Schattauer GmbH

Chromogenic methods in coagulation diagnostics

Chromogene Methoden der Gerinnungsdiagnostik
S. Rosén
1   Rossix, Mölndal, Sweden
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
27. Dezember 2017 (online)

Zusammenfassung

Chromogene Peptidsubstrate wurden vor mehr als 30 Jahren entwickelt. Obgleich sich die Anwendung chromogener Substratmethoden bei der Gerinnungs- und Fibrinolyse-Diagnostik nicht so rasch etablierte, wie anfangs angenommen, haben sich diese Methoden inzwischen zur Bestimmung verschiedener Analyte (z. B. Antithrombin, F.VIII, Protein C, Plasminogen, Plasmininhibitor, Heparine und Pentasaccharide) einen festen Platz erobert. Das Aufkommen direkter Thrombin- und Faktor-Xa-Inhibitoren veranlasste zur Entwicklung neuer, spezifischer chromogener Methoden. Diese können Eingang in die Routineanwendung finden, wenn sich die neuen Wirkstoffe als valider Ersatz für Kumarinderivate erweisen. Auch für andere Analyte wurde eine Vielzahl chromogener Untersuchungsmethoden entwickelt. Das aktuelle Interesse an globalen chromogenen Methoden für die Thrombinbildung und den Protein-C-Weg kann sich als klinisch relevant herausstellen und damit Eingang in die Routineanwendung finden.

Summary

Chromogenic peptide substrates were developed more than 30 years ago. Although the use of chromogenic substrate methods in coagulation and fibrinolysis diagnostics was not as rapidly implemented as initially believed, they are now well established for several analytes such as antithrombin, FVIII, protein C, plasminogen, plasmin inhibitor, heparins, and pentasaccharides.

The advent of direct thrombin and factor Xa inhibitors has stimulated the development of new, specific chromogenic methods and these may find their way into routine use if these new drug candidates will prove to be valid replacements for coumarin derivatives. A large number of chromogenic research methods for other analytes were developed, too. The current interest in global chromogenic methods for thrombin generation and the protein C pathway may turn out as clinically important and thus enter into routine use.

 
  • References

  • 1 Abildgaard U, Larsen ML. Assay of dermatan sulfate cofactor (heparin cofactor II) activity in human plasma. Thromb Res 1984; 35: 257-66.
  • 2 Aupeix K, Hugel B, Martin T. et al. The significance of shed membrane particles during programmed cell death in vitro, and in vivo, in HIV-1 infection. J Clin Invest 1997; 99: 1546-54.
  • 3 Aurell L, Friberger P, Karlsson G. et al. A new sensitive and highly specific chromogenic substrate for factor Xa. Thromb Res 1977; 11: 595-609.
  • 4 Baker P, Joshi M, Luddington R. Monocyte procoagulant activity: development of a microtitre plate chromogenic assay. Br J Biomed Sci 1994; 51: 328-31.
  • 5 Barrowcliffe TW. Recommendations for the assay of high-purity factor VIII concentrates. Thromb Haemost 1993; 70: 876-7.
  • 6 Becker U, Jering H, Bartl K. et al. Automated prothrombin-time test with use of a chromogenic peptide substrate and a centrifugal analyzer. Clin Chem 1984; 30: 524-8.
  • 7 Becker U, Bartl K, Lill H. et al. Development of a photometric assay for activated partial thromboplastin time and its application to the Cobas® Bio Centrifugal Analyzer. Thromb Res 1985; 40: 721-30.
  • 8 Beeck H, Nagel D, Pindur G. et al. Measurement of antithrombin activity by thrombin-based and by factor Xa-based chromogenic substrate assays. Blood Coagul Fibrinol 2000; 11: 127-35.
  • 9 Bendz B, Andersen TO, Sandset PM. A new sensitive chromogenic substrate assay of tissue factor pathway inhibitor type I. Thromb Res 2000; 97: 463-72.
  • 10 Billing Clason S, Meijer P, Kluft C. et al. Specific determination of plasmin inhibitor activity in plasma: Documentation of specificity of manual and automated procedures. Blood Coagul Fibrinol 1999; 10: 487-94.
  • 11 Blombäck B, Blombäck M, Olsson P. et al. Synthetic peptides with anticoagulant and vasodilating activity. Scand J Clin Lab Invest 1969; 24 Suppl 107: 59-66.
  • 12 Blombäck M. Chromogenic substrates in the laboratory diagnosis of clotting disorders. In: Bloom AL, Thomas DP. (eds). Haemostasis and Thrombosis. London: Churchill Livingstone; 2001: 809-23.
  • 13 Bounameaux H, de Moorloose P. Is laboratory monitoring of low-molecular-weight heparin therapy necessary? No. J Thromb Haemost 2004; 2: 551-4.
  • 14 Bredbacka S, Blombäck M, Wiman B. et al. Laboratory methods for detecting disseminated intravascular coagulation (DIC): new aspects. Acta Anaesthesiol Scand 1993; 37: 125-30.
  • 15 Butenas S, Ribarik N, Mann KG. Synthetic substrates for human factor VIIa and factor VIIa-tissue factor. Biochemistry 1993; 32: 6531-8.
  • 16 Cardigan RA, Mackie IJ, Gippner-Steppert C. et al. Determination of plasma aprotinin levels by functional and immunological assays. Blood Coagul Fibrinol 2001; 12: 37-42.
  • 17 Carlebjörk G, Blombäck M, Blomstedt M. et al. Screening of factor VIII: C levels in blood donors. Vox Sang 1986; 51: 306-9.
  • 18 Christensen U. Requirements for valid assays of clotting enzymes using chromogenic substrates. Thromb Haemost 1980; 43: 169-74.
  • 19 Claeson G. Synthetic peptides and peptidomimetics as substrates and inhibitors of thrombin and other proteases in the blood coagulation system. Blood Coagul Fibrinol 1994; 5: 411-36.
  • 20 Chmielewska J, Rånby M, Wiman B. Evidence for a rapid inhibitor to tissue plasminogen activator in plasma. Thromb Res 1983; 31: 427-36.
  • 21 Conard J, Barbier P, Samama M. Automated amidolytic method for antithrombin III determination. Thromb Haemost 1979; 42: 1350-2.
  • 22 Curvers J, Thomassen MC, Rimmer J. et al. Effects of hereditary and acquired risk factors of venous thrombosis on a thrombin generation-based APC resistance test. Thromb Haemost 2002; 88: 5-11.
  • 23 Dati F, Barthels M, Conard J. et al. Multicenter evaluation of a chromogenic substrate method for photometric determination of prothrombin time. Thromb Haemost 1987; 58: 856-65.
  • 24 Demers C, Henderson P, Blajchman MA. et al. An antithrombin III assay based on factor Xa inhibition provides a more reliable test to identify congenital antithrombin III deficiency than an assay based on thrombin inhibition. Thromb Haemost 1993; 69: 231-5.
  • 25 Depasse F, Gerotziafas GT, Busson J. et al. Assessment of three chromogenic and one clotting assays for the measurement of synthetic pentasaccharide fondaparinux (Arixtra®) anti-Xa activity. J Thromb Haemost 2004; 2: 346-79.
  • 26 Diéval J, Nguyen G, Gross S. et al. A lifelong bleeding disorder associated with a deficiency of plasminogen activator inhibitor type I. Blood 1991; 77: 528-32.
  • 27 Dykes AC, Walker ID, McMahon AD. et al. A study of protein S antigen levels in 3788 healthy volunteers: influence of age, sex and hormone use, and estimate for prevalence of deficiency state. Br J Haematol 2001; 113: 636-41.
  • 28 Erlanger BF, Kokowsky N, Cohen W. The preparation and properties of two chromogenic substrates of trypsin. Arch Biochem Biophys 1961; 95: 271-8.
  • 29 Fareed J, Walenga JM, Hoppensteadt D. et al. Chemical and biological heterogeneity in low molecular heparins: implications for clinical use and standardization. Semin Thromb Hamost 1989; 15: 440-63.
  • 30 Frank L, Sigte J, Oswaldsson U. et al. Comparison of the Bethesda and Nijmegen methods in the assessment of factor VIII:C inhibitors. Thromb Haemost 1999; 82: 569.
  • 31 Freyssinet J-M. Cellular microparticles: What are they bad or good for?. J Thromb Haemost 2003; 1: 1655-62.
  • 32 Friberger P, Egberg N, Holmer E. et al. Antithrombin assay – the use of human or bovine thrombin and the observation of a “second” heparin cofactor. Thromb Res 1982; 25: 433-6.
  • 33 Fukuda C, Iijima K, Nakamura K. Measuring tissue factor (factor III) activity in plasma. Clin Chem 1989; 35: 1897-900.
  • 34 Gallimore M, Aurell L, Friberger P. et al. Chromogenic peptide substrate assays for determining functional activities of α2-macroglobulin and α1-antitrypsin using a new trypsin substrate. Thromb Haemost 1983; 50: 230.
  • 35 Gallimore MJ, Harris SL, Jones DW. et al. Plasma levels of factor XII, prekallikrein and high molecular weight kininogen in normal blood donors and patients having suffered venous thrombosis. Thromb Res 2004; 114: 91-6.
  • 36 Giri TK, Hillarp A, Härdig Y. et al. A new direct, fast and quantitative enzyme-linked ligandsorbent assay for measurement of free protein S antigen. Thromb Haemost 1998; 79: 767-72.
  • 37 Gould MK, Dembitzer AD, Doyle RL. et al. Low-molecular-weight heparins compared with unfractionated heparin for treatment of acute deep venous thrombosis. Ann Intern Med 1999; 100: 269-77.
  • 38 Gray E, Tubbs J, Thomas S. et al. Measurement of activated factor IX in factor IX concentrates: correlation with in vivo thrombogenicity. Thromb Haemost 1995; 73: 675-9.
  • 39 Greengard JS, Alhenc-Gelas M, Gandrille D. et al. Pseudohomozygous protein C resistance due to coinheritance of heterozygous factor V-R506Q and type I factor V deficiency associated with thrombosis. Thromb Haemost 1995; 73: 1361.
  • 40 Hara T, Yokoyama A, Ishihara H. et al. DX-9065a, a new synthetic, potent anticoagulant and selective inhibitor for factor Xa. Thromb Hamost 1994; 71: 314-9.
  • 41 Harenberg J. Is laboratory monitoring of low-molecular-weight heparin therapy necessary? Yes. J Thromb Haemost 2004; 2: 547-50.
  • 42 Hemker HC, Giesen PLA, Ramjee M. et al. The thrombogram: monitoring thrombin generation in platelet rich plasma. Thromb Haemost 2000; 83: 589-91.
  • 43 Hemker HC, Wielders S, Tesser GI. et al. Continous registration of thrombin generation in plasma, its use for the determination of the thrombin potential. Thromb Haemost 1993; 70: 617-24.
  • 44 Hortin GL, Warshawsky I, Laude-Sharp M. Macromolecular chromogenic substrates for measuring proteinase activity. Clin Chem 2001; 47: 215-22.
  • 45 Hubbard AR, Jennings CA. Inhibition of tissue thromboplastin-mediated blood coagulation. Thromb Res 1986; 42: 489-98.
  • 46 Hutton RA, Kamiguti Y, Matthews KB. et al. The use of a chromogenic assay for factor VIII in patients with factor VIII inhibitors or von Willebrand’s disease. Thromb Res 1991; 63: 189-93.
  • 47 Ieko M, Tarumi T, Takeda M. et al. Synthetic selective inhibitors of coagulation factor Xa strongly inhibit thrombin generation without affecting initial thrombin forming time necessary for platelet activation in hemostasis. J Thromb Haemost 2004; 2: 612-8.
  • 48 Kolde H-J, Eberle R, Heber H. et al. New chromogenic substrates for thrombin with increased specificity. Thromb Haemost 1986; 56: 155-9.
  • 49 Koster T, Blann AD, Briët E. et al. Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep venous thrombosis. Lancet 1995; 345: 152-5.
  • 50 Kraaijenhagen RA, in’t Anker PS, Koopman MMW. et al. High plasma concentration of factor VIII:C is a major risk factor for venous thromboembolism. Thromb Haemost 2000; 83: 5-9.
  • 51 Kruithof E, Tran-Thang C, Ransijn A. et al. Demonstration of a fast acting inhibitor of plasminogen activators in human plasma. Blood 1984; 64: 907-13.
  • 52 Latallo ZS, Teisseyne E. Amidolytic assay of prothrombin activated with ecarin, a procoagulant from Echis carinatus venom. In: Witt I. (ed). New Methods for the Analysis of Coagulation Using Chromogenic Substrates. Berlin: Walter de Gruyter; 1977: 181-92.
  • 53 Laudano AP, Doolittle RF. Synthetic peptide derivatives that bind fibrinogen and prevent the polymerisation of fibrin monomers. Proc Natl Acad Sci 1978; 75: 3085-9.
  • 54 Lindhout T. Determination of factor V activity. In: Hemker HC. (ed). Handbook of Synthetic Substrates. The Hague: Martinus Nijhoff; 1983: 101.
  • 55 Lindmark E, Tenno T, Chen J. et al. IL-10 inhibits LPS-induced human monocyte tissue factor expression in whole blood. Br J Haematol 1998; 102: 597-604.
  • 56 Lottenberg R, Hall JA, Fenton II JW. et al. The action of thrombin on peptide p-nitroanilide substrates: hydrolysis of Tos-Gly-Pro-Arg-pNA and D-Phe-Pip-Arg-pNA by human α and γ and bovine α and β-thrombins. Thromb Res 1982; 28: 313-32.
  • 57 Lämmle B, Bounameaux H, Marbet GA. et al. Monitoring of oral anticoagulation by an amidolytic factor X assay. A long term study in 42 patients. Thromb Haemost 1980; 44: 150-3.
  • 58 Malm J, Aurell M, Nilsson IM. et al. Thromboembolic disease – critical evaluation of laboratory investigation. Thromb Haemost 1992; 68: 7-13.
  • 59 McCall F, Conkie JA, Walker ID. et al. Measurement of protein C in plasma – a fully automated assay. Thromb Res 1987; 45: 681-5.
  • 60 Moll S, Ortel TL. Monitoring warfarin therapy in patients with lupus anticoagulants. Ann Intern Med 1997; 127: 177-85.
  • 61 Munkvad S, Jespersen J, Sidelmann J. et al. Specific, sensitive, precise and rapid functional chromogenic assay of activated first complement component (C1) in plasma. Clin Chem 1990; 36: 1305-11.
  • 62 Nicolaes GAF, Thomassen MC, van Oerle R. et al. A prothrombinase-based assay for detection of resistance to activated protein C. Thromb Haemost 1996; 76: 404-10.
  • 63 Nieuwland R, Berckmans RJ, Rotteveel-Eijkman RC. et al. Cell-derived microparticles generated in patients during cardiopulmonary bypass are highly procoagulant. Circulation 1997; 96: 3534-41.
  • 64 O’Donnell J, Mumford AD, Manning RA. et al. Elevation of FVIII:C in venous thromboembolism is persistent and independent of the acute phase response. Thromb Haemost 2000; 83: 10-3.
  • 65 Ödegaard OR, Abildgaard U. Antithrombin III: Critical review of assay methods. Signification of variations in health and disease. Haemostasis 1978; 7: 127-34.
  • 66 Ödegaard OR, Try K, Andersson TR. Protein C: an automated activity assay. Haemostasis 1987; 17: 109-13.
  • 67 Parker KA, Tollefsen DM. The protease specificity of heparin cofactor II. Inhibition of thrombin generated during coagulation. J Biol Chem 1985; 260: 3501-5.
  • 68 The Persist Investigators. A novel long-acting synthetic factor Xa inhibitor (SanOrg34006) to replace warfarin for secondary prevention in deep vein thrombosis. A phase II evaluation. J Thromb Haemost 2004; 2: 47-53.
  • 69 Poort SR, Rosendaal FR, Reitsma PH. et al. A common genetic variation in the 3’-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 1996; 88: 3698-703.
  • 70 Prasa D, Stürzebecher J. Determination of activated factor IX in factor IX concentrates with a chromogenic substrate. Thromb Res 1998; 92: 99-102.
  • 71 Ridker P, Vaughan DE, Stampfer MJ. et al. Baseline fibrinolytic state and the risk of future venous thrombosis. A prospective study of endogenous tissue-type plasminogen activator and plasminogen activator inhibitor. Circulation 1992; 85: 1822-7.
  • 72 Rosén S, Andersson M, Andersson N-A. A new chromogenic APC resistance assay with high discrimination between absence and presence of the factor V gene mutation G1691->A. Thromb Haemost 1995; 73: 1364.
  • 73 Rosén S, Andersson M, Blombäck M. et al. Clinical application of a chromogenic substrate method for determination of factor VIII activity. Thromb Haemost 1985; 54: 818-23.
  • 74 Rosing J, Tans G, Nicolaes GAF. et al. Oral contraceptives and venous thrombosis: different sensitivities to activated protein C in women using second- and third-generation oral contraceptives. Br J Haematol 1997; 97: 233-8.
  • 75 Rånby M, Sundell BI, Nilsson TK. Blood collection in a strong acidic anticoagulant used in a study of dietary influence on basal tPA activity. Thromb Haemost 1989; 62: 917-22.
  • 76 Safa O, Smirnov M, Thomas E. et al. A new screening assay for abnormalities in the protein C pathway. ISTH Congress. 2003 Poster 0015: 109.
  • 77 Sandset PM, Warn-Cramer BJ, Rao VM. et al. Depletion of extrinsic pathway inhibitor (EPI) sensitizes rabbits to disseminated intravascular coagulation induced with tissue factor: Evidence supporting a physiological role for EPI as a natural anticoagulant. Proc Natl Acad Sci 1991; 88: 708-12.
  • 78 Schramm W. C1-esterase inhibitor, C1 inactivator. In: Bergmeyer HU. (ed). Methods of Enzymatic Analyses, Vol V, Enzymes 3: Peptidases, Proteinases and their Inhibitors. Weinheim: Verlag Chemie; 1984: 461-6.
  • 79 Scott CF, Sinha D, Seaman FS. et al. Amidolytic assay of human factor XI in human plasma: Comparison with a coagulant assay and a new rapid radioimmunoassay. Blood 1984; 63: 42-50.
  • 80 Seligsohn U, Österud B, Rapaport SI. Coupled amidolytic assay for factor VII: Its use with a clotting assay to determine the activity state of factor VII. Blood 1978; 52: 978-88.
  • 81 Soria J, Soria C, Samama MM. A plasminogen assay using a chromogenic synthetic substrate. Results from clinical work and studies of thrombolysis. In: Davidson JF, Rowan RM, Samama MM. et al. (eds). Progress in Chemical Fibrinolysis and Thrombolysis. New York: Raven Press; 1978: 337-46.
  • 82 Spannagl M, Bichler J, Birg A. et al. Development of a chromogenic substrate assay for the determination of hirudin in plasma. Blood Coagul Fibrinol 1991; 2: 121-7.
  • 83 Stormorken H. A new era in the laboratory evaluation of coagulation and fibrinolysis. Thromb Haemost 1976; 36: 299-301.
  • 84 Stormorken H, Baklund A, Gallimore M. et al. Chromogenic substrate assay of plasma prekallikrein. Haemostasis 1978; 7: 69-75.
  • 85 Stüber W, Kosina H, Heimburger N. Synthesis of a tripeptide with a C-terminal nitrile moiety and the inhibition of proteinases. Int J Peptide Protein Res 1988; 31: 63-70.
  • 86 Stürzebecher J, Svendsen L, Eichenberger R. et al. A new assay for the determination of factor XII in plasma using a chromogenic substrate and a selective inhibitor of plasma kallikrein. Thromb Res 1989; 55: 709-15.
  • 87 Svendsen L, Blombäck B, Blombäck M. et al. Synthetic chromogenic substrates for determination of trypsin, thrombin and thrombin-like enzymes. Thromb Res 1972; 1: 267-78.
  • 88 Tans G, Janssen-Claessen T, van Diejen G. et al. Activation of factor IX by factor XIa – a spectrophotometric assay for factor IX activity in human plasma. Thromb Haemost 1982; 48: 127-32.
  • 89 Tans G, Rosing J, Thomassen MC. et al. Comparison of anticoagulant and procoagulant activities of stimulated platelets and platelet-derived microparticles. Blood 1991; 77: 2641-8.
  • 90 Teger-Nilsson AC, Friberger P, Gyzander E. Determination of a new rapid antiplasmin in human blood by using a plasmin specific tripeptide substrate. Scand J Clin Lab Invest 1977; 37: 403-9.
  • 91 Teien AN, Lie M. Evaluation of an amidolytic heparin assay method: Increased sensitivity by adding purified antithrombin III. Thromb Res 1977; 10: 399-410.
  • 92 Teien AN, Lie M, Abildgaard U. Assay of heparin in plasma using a chromogenic substrate for activated factor X. Thromb Res 1976; 8: 413-6.
  • 93 Tran TH, Duckert F. Influence of heparin cofactor II (HCII) on the determination of antithrombin III (AT). Thromb Res 1985; 40: 571-6.
  • 94 Tripodi A, Mannucci PM. Laboratory investigation of thrombophilia. Clin Chem 2001; 47: 1597-606.
  • 95 Verheijen JH, Mullaart E, Chang GTG. et al. A simple, sensitive spectrophotometric assay for extrinsic (tissue-type) plasminogen activator applicable to measurements in plasma. Thromb Haemost 1982; 48: 266-9.
  • 96 Waagenvoord RJ, Hendrix HH, Hemker HC. Development of a simple chromogenic factor VIII assay for clinical use. Haemostasis 1989; 19: 196-204.
  • 97 Wiman B, Rånby M. Determination of soluble fibrin in plasma by a rapid and quantitative spectrophotometric assay. Thromb Haemost 1986; 55: 189-93.
  • 98 Witt I. Test systems with synthetic peptide substrates in haemostaseology. Eur J Clin Chem Clin Biochem 1991; 29: 355-74.
  • 99 Witt I, Lill H. α1-Proteinase inhibitor (α1-antitrypsin). In: Bergmeyer HU. (ed). Methods of Enzymatic Analyses, Vol V, Enzymes 3: Peptidases, Proteinases and their Inhibitors. Weinheim: Verlag Chemie; 1984: 448.
  • 100 Wolberg AS, Monroe DM, Roberts HR. et al. Elevated prothrombin results in clots with an altered fiber structure: a possible mechanism of the increased thrombotic risk. Blood 2003; 101: 3008-13.