Hamostaseologie 2005; 25(04): 380-386
DOI: 10.1055/s-0037-1619667
Original Article
Schattauer GmbH

Antithrombotics in thrombosis and cancer

Antithrombotika bei Thrombose und Krebs
S. A. Mousa
1   Albany College of Pharmacy, Pharmaceutical Research Institute, Albany, NY
› Author Affiliations
Further Information

Publication History

Publication Date:
27 December 2017 (online)

Summary

Many cancer patients have a hypercoagulable state, with recurrent thrombosis due to the impact of cancer cells and chemotherapy or radiotherapy on the coagulation cascade. Studies have demonstrated that unfractionated heparin (UFH) or its low molecular weight fractions interfere with various processes involved in tumour growth and metastasis. These include fibrin formation; binding of heparin to angiogenic growth factors, such as basic fibroblast growth factor (FGF2) and vascular endothelial growth factor (VEGF); modulation of tissue factor; and perhaps other more important modulatory mechanisms, such as enhanced tissue factor pathway inhibitor (TFPI) release and inhibition of various matrix-degrading enzymes. Clinical trials have suggested a clinically relevant effect of low molecular weight heparin (LMWH), as compared to UFH, on the survival of cancer patients with deep vein thrombosis. Similarly, the impact of warfarin on the survival of cancer patients with thromboembolic disorders was demonstrated. Studies from our laboratory demonstrated a significant role for LMWH, warfarin, anti-VIIa, and LMWH-releasable TFPI on the regulation of angiogenesis, tumour growth, and tumour metastasis. Thus, modulation of tissue factor/VIIa non-coagulant activities by LMWH, warfarin, anti-VIIa, or TFPI might be a useful therapeutic method for the inhibition of angiogenesis associated with human tumour growth and metastasis. Additionally, antiplatelet drugs could have an impact on tumour metastasis, and the combination of antiplatelets and anticoagulants at adjusted doses might provide greater benefits to cancer patients.

Zusammenfassung

Bei vielen Krebspatienten besteht eine erhöhte Gerinnbarkeit mit rezidivierenden Thrombosen, da sich Krebszellen und Chemo- oder Strahlentherapie in die Gerinnung eingreifen. Studien zeigten, dass unfraktioniertes und niedermolekulares Heparin mehrere Vorgänge beeinträchtigen, die an Tumorwachstum und Metastasierung beteiligt sind. Hierzu gehören Fibrinbildung, Bindung von Heparin an angiogene Wachstumsfaktoren wie z. B. der basische Fibroblastenwachstumsfaktor (FGF2) und der vaskuläre endotheliale Wachstumsfaktor (VEGF), Modulation des Gewebefaktors und evtl. andere modulatorische Mechanismen, z. B. vermehrte Freisetzung des Tissue Factor Pathway Inhibitors (TFPI) und Hemmung Matrix-abbauender Enzyme. Studien lassen auf einen klinisch relevanten Effekt von niedermolekularem (LMWH) im Vergleich zu unfraktioniertem Heparin (UFH) auf das Überleben von Krebspatienten mit tiefer Venenthrombose schließen. In gleicher Weise wurden die Auswirkungen von Warfarin auf das Überleben von Krebspatienten mit thromboembolischen Störungen nachgewiesen. Studien aus unserem Labor zeigten eine maßgebliche Rolle von LMWH, Warfarin, anti-VIIa und durch LMWH freisetzbarem TFPI auf die Regulation der Angiogenese, des Tumorwachstums und der Metastasierung. Die Modulation der nicht-koagulativen Aktivitäten von Gewebefaktor/ VIIa durch LMWH, Warfarin, anti-VIIa und TFPI könnte eine nützliche therapeutische Methode zur Hemmung der mit dem Tumorwachstum und der Metastasierung verbundenen Angiogenese sein. Außerdem wirken Thrombozytenfunktionshemmer möglicherweise auf die Metastasierung, und die Kombination aus Thrombozytenfunktionshemmern und Antikoagulanzien in angepasster Dosierung könnte Krebspatienten größere Vorteile bringen.

 
  • References

  • 1 Amirkhosravi A, Amaya M, Desai H. et al. Platelet-CD40 ligand interaction with melanoma cell and monocyte CD40 enhances cellular procoagulant activity. Blood Coagul Fibrinolysis 2002; 13: 505-12.
  • 2 Amirkhosravi A, Mousa SA, Amaya M. et al. Antimetastatic effect of tinzaparin, a low molecular weight heparin. J Thromb Haemost 2003; 1: 1972-6.
  • 3 Baron JA, Gridley G, Weiderpass E. et al. Venous thromboembolism and cancer. Lancet 1998; 351: 1077-80.
  • 4 Borsig L, Wong R, Feramisco J. et al. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci USA 2001; 98: 3352-7.
  • 5 Caine GJ, Lip GY. Anticoagulants as anticancer agents?. Lancet Oncol 2002; 3: 591-2.
  • 6 Chahinian A, Propert K, Ware J. et al. A randomized trial of anticoagulation with warfarin and of alternating chemotherapy in extensive small-cell lung cancer by the Cancer and Leukemia group B. J Clin Oncol 1989; 7: 993-1002.
  • 7 Chambers AF, MacDonald IC, Schmidt EE. et al. Steps in tumor metastasis: new concepts from intra-vital video microscopy. Cancer Metastasis Rev 1995; 14: 279-301.
  • 8 Chambers AF. The metastatic process: basic research and clinical implications. Oncol Res 1999; 11: 161-8.
  • 9 Dvorak HF, Senger DR, Dvorak AM. Fibrin as a component of the tumor stroma: origins and biological significance. Cancer Metastasis Rev 1983; 2: 41-73.
  • 10 Dvorak HF. Thrombosis and cancer. Hum Pathol 1987; 18: 275-84.
  • 11 Engelberg H. Actions of heparin in the atherosclerotic process. Pharmacol Rev 1996; 48: 327-52.
  • 12 Engelberg H. Actions of heparin that may affect the malignant process. Cancer 1999; 85: 257-72.
  • 13 Falanga A, Rickles FR. Pathophysiology of the thrombophilic state in the cancer patient. Semin Thromb Hemost 1999; 25: 173-82.
  • 14 Falanga A. Mechanisms of hypercoagulation in malignancy and during chemotherapy. Haemostasis 1998; 28: 50-60.
  • 15 Gasic GJ, Gasic TB, Stewart CC. Anti-metastatic effect associated with platelet reduction. Pathology 1998; 61: 46-52.
  • 16 Goldberg RJ, Seneff M, Gore JM. Occult malignant neoplasm in patients with deep venous thrombosis. Ann Intern Med 1987; 147: 251-3.
  • 17 Haward W. Phlebitis and thrombosis. Lancet 1906; 1: 650-5.
  • 18 Hirsh J, Levine MN. Low molecular weight heparin. Blood 1992; 79: 1-17.
  • 19 Hull RD, Raskob GE, Pineo GF. et al. Subcutaneous low-molecular weight heparin compared with continuous intravenous heparin in the treatment of proximal-vein thrombosis. N Engl J Med 1992; 326: 975-82.
  • 20 Kakkar AJ, De Ruvo N, Tebbutt S. et al. Extrinsic pathway activation with elevated tissue factor and factor VIIa in patients with cancer. Lancet 1995; 346: 1004-5.
  • 21 Kakkar AJ, Williamson RC. Prevention of venous thromboembolism in cancer using low molecular weight heparin. Haemostasis 1997; 27 (Suppl. 01) 32-7.
  • 22 Kakkar AK, Levine MN, Prandoni P. et al. What is the role for antithrombotics in cancer care? Interactive session with panel discussion. Cancer Treat Rev 2002; 28: 157-9.
  • 23 Karpatkin S, Pearlstein E, Ambrogio C. et al. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest 1988; 81: 1012-9.
  • 24 Koenig A, Norgard-Sumnicht K, Linhardt R. et al. Differential interactions of heparin and heparin sulfate glycosaminoglycans with the selectins. J Clin Invest 1998; 101: 877-89.
  • 25 Koopman MMW, Prandoni P, Piovella F. et al. Treatment of venous thrombosis with intravenous unfractionated heparin administered in the hospital as compared with subcutaneous low-molecular-weight heparin administered at home. N Engl J Med 1996; 334: 682-7.
  • 26 Lebeau B, Chastang C, Brechot J-M. et al. Subcutaneous heparin treatment increases survival in small cell lung cancer. Cancer 1994; 74: 38-45.
  • 27 Levine M, Hirsh J, Gent M. et al. Double-blind randomised trial of a very-low-dose warfarin for prevention of thromboembolism in stage IV breast cancer. Lancet 1994; 343: 886-9.
  • 28 Levine MN. Prevention of thrombotic disorders in cancer patients undergoing chemotherapy. Thromb Haemost 1997; 78: 133-6.
  • 29 Linhardt RJ, Gunay NS. Production and chemical processing of low molecular weight heparins. Semin Thromb Haemostasis 1999; 25: 5-16.
  • 30 Manegold PC, Hutter J, Pahernik SA. et al. Platelet-endothelial interaction in tumor angiogenesis and microcirculation. Blood 2003; 101: 1970-6.
  • 31 Markus G. The role of haemostasis and fibrinolysis in the metastatic spread of cancer. Thromb Haemost 1984; 10: 61-72.
  • 32 Meyers G, Marjanovic Z, Valcke J. et al. Comparison of LMWH and wafarin for the secondary prevention of venous thromboembolism in patients with cancer. Arch Intern Med 2002; 162: 1729-35.
  • 33 Mousa SA, Bozarth J, Larnkjaer A. et al. Vascular effects of heparin molecular weight fractions and LMWH on the release of TFPI from human endothelial cells. Blood 2000; 16: 59 3928.
  • 34 Mousa SA, Fareed JW. Advances in anticoagulant, antithrombotic and thrombolytic drugs. Exp Opin Invest Drugs 2001; 10: 157-62.
  • 35 Mousa SA, Mohamed S. Anti-angiogenesis efficacy of the LMWH, tinzaparin and TFPI. Blood 1999; 94: 82 Abstract 22a.
  • 36 Mousa SA. Anticoagulants in thrombosis and cancer: the missing link. Semin Thromb Haemost 2002; 28: 45-52.
  • 37 Mousa SA. Anticoagulants in thrombosis and cancer: the missing link. Expert Rev Anticancer Ther 2002; 2: 227-33.
  • 38 Mousa SA. Mechanisms of angiogenesis in vascular disorders: potential therapeutic targets. In: Mousa S. (ed). Angiogenesis Inhibitors and Stimulators: Potential Therapeutic Implications. Georgetown, TX: R. G. Landes; 2000. Chapter 1: 1-12.
  • 39 Nelson RM, Ceccioni D, Roberts WG. et al. Heparin oligosaccharides bind L- and P- selectins and inhibit acute inflammation. Blood 1993; 82: 3253-8.
  • 40 Nielsen JI, Ostergaard P. Chemistry of heparin and low molecular weight heparin. Acta Chir Scand Suppl 1988; 543: 52-6.
  • 41 Paredes N, Xu L, Berry LR. et al. The effects of chemotherapeutic agents on the regulation of thrombin on cell surfaces. Br J Haematol 2003; 120: 315-24.
  • 42 Pinedo H, Verheul H, D’Amato R. et al. Involvement of platelets in tumor angiogenesis?. Lancet 1998; 352: 1775-7.
  • 43 Pintucci G, Froum S, Pinnell J. et al. Trophic effects of platelets on cultured endothelial cells are mediated by platelet-associated fibroblast growth factor-2 and vascular endothelial growth factor. Thromb Haemost 2002; 88: 834-42.
  • 44 Rickles FR, Edwards RL. Activation of blood coagulation in cancer: Trousseau’s syndrome revisited. Blood 1982; 62: 14-31.
  • 45 Rickles FR, Levine MN. Epidemiology of thrombosis in cancer. Acta Haematol 2001; 106: 6-12.
  • 46 Ruf W, Mueller BM. Tissue factor in cancer angiogenesis and metastasis. Curr Opin Hematol 1996; 3: 379-84.
  • 47 Saba HI, Khalil FK, Morelli GA. et al. Thromboembolism preceding cancer: a correlation study. Am J Hematol 2003; 72: 109-14.
  • 48 Schiller H, Bartscht T, Arlt A. et al. Thrombin as a survival factor for cancer cells: thrombin activation in malignant effusions in vivo and inhibition of idarubicin-induced cell death in vitro. Int J Clin Pharmacol Ther 2002; 40: 329-35.
  • 49 Simonneau G, Sors H, Charbonnier B. et al. A comparison of low-molecular-weight heparin with unfractionated heparin for acute pulmonary embolism. N Engl J Med 1997; 337: 663-9.
  • 50 Sorensen H, Mellemkjaer L, Olsen J. et al. Prognosis of cancers associated with venous thromboembolism. N Engl J Med 2000; 343: 1846-50.
  • 51 Thornes R. Coumarins, Melanoma and Cellular Immunity. In: McBrien D, Slator T. editors. Protective Agents in Cancer. London: Academic Press; 1983: 43-56.
  • 52 Trikha M, Zhou Z, Timar J. et al. Multiple roles for platelet GPIIb/IIIa and alphavbeta3 integrins in tumor growth, angiogenesis, and metastasis. Cancer Res 2002; 62: 2824-33.
  • 53 Trousseau A. Phlegmasia alba dolens. In: Baillier JB. (ed). Clinique de l’Hotel-Dieu de Paris. 2nd ed.. London: New Sydenham Society; 1865. 3: 94.
  • 54 Trousseau A. Plegmasia alba dolens. In: Baillier JB. (ed). Clinique de l’Hotel-Dieu de Paris. 2nd ed.. London: New Syndenham Society; 1865. 3: 654-712.
  • 55 Varki A, Varki NM. P-selectin, carcinoma metastasis and heparin: novel mechanistic connections with therapeutic implications. Braz J Med Biol Res 2001; 34: 711-7.
  • 56 Varki NM, Varki A. Heparin inhibition of selectinmediated interactions during the hematogenous phase of carcinoma metastasis: rationale for clinical studies in humans. Semin Thromb Hemost 2002; 28: 53-66.
  • 57 Verheul HM, Hoekman K, Luykx-de Bakker S. et al. Platelet: transporter of vascular endothelial growth factor. Clin Cancer Res 1997; 3: 2187-90.
  • 58 Verheul HM, Pinedo HM. Tumor growth: a putative role for platelets?. Oncologist 1998; 3 (02) II.
  • 59 von Tempelhoff GF, Harenberg J, Neimann F. et al. Effect of low molecular weight heparin (Certoparin) versus unfractionated heparin on cancer survival following breast and pelvic cancer surgery: a prospective randomized double-blind trial. Int Oncol 2000; 16: 815-24.
  • 60 Werther K, Christensen IJ, Nielsen HJ. Determination of vascular endothelial growth factor (VEGF) in circulating blood: significance of VEGF in various leucocytes and platelets. Scand J Clin Lab Invest 2002; 62: 343-50.
  • 61 Wojtukiewicz M, Zacharski L, Memoli V. et al. Fibrinogen-fibrin transformation in situ in renal cell carcinoma. Anticancer Res 1990; 10: 579-82.
  • 62 Zacharski L, Wojtukiewicz M, Costantini V. et al. Pathways of coagulation/fibrinolysis activation in malignancy. Semin Thromb Hemostasis 1992; 18: 104-16.
  • 63 Zacharski LR, Ornstein DL. Heparin and cancer. Thromb Haemost 1998; 80: 10-23.
  • 64 Zacharski LR. Anticoagulant in cancer treatment: malignancy as a solid phase coagulopathy. Cancer Lett 2002; 186: 1-9.
  • 65 Zhang Y, Deng Y, Luther T. et al. Tissue factor controls the balance of angiogenic and anti-angiogenic properties of tumor cells in mice. J Clin Invest 1994; 94: 1320-7.