Nuklearmedizin 1982; 21(01): 1-7
DOI: 10.1055/s-0037-1620542
Originalarbeiten – Original Articles
Schattauer GmbH

Metabolic and Distribution Studies with Radiolabeled 5-Fluorouracil

Stoffwechsel- und Verteilungsuntersuchungen mit markiertem 5-Fluorouracil
D. Young
1   From the Radiopharmacy Program, Division of Nuclear Medicine and the School of Medicine, University of Southern California, Los Angeles, CA, USA
,
E. Vine
1   From the Radiopharmacy Program, Division of Nuclear Medicine and the School of Medicine, University of Southern California, Los Angeles, CA, USA
,
A. Ghanbarpour
1   From the Radiopharmacy Program, Division of Nuclear Medicine and the School of Medicine, University of Southern California, Los Angeles, CA, USA
,
J. Shani
1   From the Radiopharmacy Program, Division of Nuclear Medicine and the School of Medicine, University of Southern California, Los Angeles, CA, USA
,
J.K. Siemsen
1   From the Radiopharmacy Program, Division of Nuclear Medicine and the School of Medicine, University of Southern California, Los Angeles, CA, USA
,
W. Wolf
1   From the Radiopharmacy Program, Division of Nuclear Medicine and the School of Medicine, University of Southern California, Los Angeles, CA, USA
› Author Affiliations
Further Information

Publication History

Received: 24 September 1981

Publication Date:
10 January 2018 (online)

5-Fluorouracil (5-FU) is an effective anti-tumor drug, which has been used both as a single agent and in combination with other chemotherapeutic agents for the treatment of tumors such as breast and colorectal carcinoma. We synthesized 5-FU with trace amounts of 18F-5-FU and administered the compounds intravenously to 6 cancer patients. The patients were scanned at 2 hr intervals for 12 hrs and their urine collected whenever possible. We also injected 5-FU with the tracer 18F-5-FU, at pharmacological doses, into non-tumored rats, and sampled their bile and blood for 95 mins post-injection. For comparison, 2-14C-5-FU was injected into non-tumored rats and their bile and blood sampled at the same intervals. Minute quantities of rat bile and serum were analyzed chromatographically by high-performance TLC. 5-FU and two of its metabolites (FBAL and FUPA) were identified and quantified by this technique. Both percentage and absolute amounts of 5-FU in the bile follow comparative kinetic patterns. While the liver and the urinary bladder were clearly observable in all 6 patients, the detectability of the gall-bladder was correlated to the inverse of the alkaline phosphatase level in the blood. This work suggests that the diversity of the 5-FU metabolism in cancer patients may allow the use of 18F-5-FU as a probe for understanding those individual variabilities in clinical situations.

5-Fluorouracil (5-FU) ist ein wirksames Medikament gegen Krebs, das mehr und mehr als solches und in Kombination gegen Brust- und kolorektales Karzinom verwendet wird. Wir haben 5-FU mit Spuren von 18F markiert und haben es 6 Krebspatienten intravenös verabreicht. Die Patienten wurden alle 2 Std. über einen Zeitraum von 12 Std. Szintigraphiert und wenn möglich, ihr Harn gesammelt. Wir haben auch pharmakologische Mengen von 5-FU gemeinsam mit markiertem 18F-5-FU an Ratten verabreicht, die keinen Tumor hatten. Blut und Galle dieser Tiere wurde innerhalb einer 95 Min. Periode gesammelt. Zum Vergleich wurde 2-14C-5-FU in tumorfreie Ratten injiziert und Blut und Galle zu den gleichen Zeitpunkten gesammelt. Kleinste Mengen von Blut und Galle wurden mit der „High Performance TLC” analysiert. 5-FU und zwei seiner Metaboliten (FBAL und FUPA) wurden identifiziert und quantitativ gemessen. Sowohl der Prozentsatz als auch die absolute Menge von 5-FU in der Galle zeigten eine vergleichbare Kinetik. Während Leber und Nieren bei allen sechs Patienten szintigraphisch deutlich dargestellt werden konnten, war die Gallenblase nur im umgekehrten Verhältnis zum Blutspiegel der alkalinen Phosphatase sichtbar. Diese Resultate deuten darauf hin, daß Unterschiede im 5-FU-Stoffwechsel bei Krebspatienten die Verwendung des 18F-FU zur Verbesserung unseres Verständnisses der individuellen Abweichungen in klinischen Situationen ermöglichen.

 
  • References

  • 1 Carter S. K. Single and combination nonhormonal chemotherapy in breast cancer. Cancer 30: 1543-1555 1972;
  • 2 Chadwick M, Rogers W. I. The physiological disposition of 5-FU in mice bearing solid L-1210 lymphocytic leukemia. Cancer Res 32: 1045-1056 1972;
  • 3 Douglass Jr. H. O, Mittelman A. Metabolic studies of 5-FU. 2 Influence of the route of administration on the dynamics of distribution in man. Cancer 34: 1878-1881 1974;
  • 4 Fink K, Cline R. E, Fink R. M. Paper chromatography of several classes of compounds: Correlated Rf values in a variety of solvent systems. Anal. Chem 35: 389-398 1963;
  • 5 Ghanbarpour A, Wolf W. Unpublished Results.
  • 6 Klubes P, Connelly K, Cerna I, Mandel H. G. Effects of 5-FU on 5-fluorodeoxyuridine-5’-monophosphate and 2’-deoxyuridine-5’-monophosphate pools, and DNA synthesis in solid mouse L-1210 and rat Walker-256 tumors. Cancer Res 38: 2325-2331 1978;
  • 7 Laskin J. D, Evans R. M, Slocum H. K, Burke D, Hakala M. T. Basis for natural variation in sensitivity to 5-FU in mouse and human cells in culture. Cancer Res 39: 383-390 1979;
  • 8 Lieberman L. M, Wessels B. W, Wiley A. L, Gatley S. J, Nickles R. J, Young D, Wolberg W. H, Bogden A. E. l8F-5-FU studies in humans and animals. Int. J. Rad. Oncol. Biol. Phys 6: 505-509 1980;
  • 9 Manaka R. C, Schumitzky A, Wolf W. Symbolic programs for structural identification of linear pharmacokinetic systems. Comp. Biomed 13: 203-216 1981;
  • 10 Moertel C. G. Clinical management of advanced gastrointestinal cancer. Cancer 36: 675-682 1975;
  • 11 Moran R. G, Spears C. P, Heidelberger C. Biochemical determinants of tumor sensitivity to 5-FU; Ultrasensitive methods for the determination of 5-F-2’-deoxyuridylate, 2’-deoxyuridylate and thymidylate synthethase. Proc. Natl. Acad. Sci 76: 1456-1460 1979;
  • 12 Mukherjee K. L, Heidelberger C. Studies on fluori-nated pyrimidines IX. The degradation of 5-FU-6-14C. J. Biol. Chem 235: 433-437 1960;
  • 13 Shani J, Wolf W. A Model of prediction of chemotherapy response to 5-FU based on the differential distribution of 18F-5-FU in sensitive versus resistant lym-phocitic leukemia in mice. Cancer Res 37: 2306-2308 1977;
  • 14 Shani J, Wolf W, Schlesinger T, Atkins H. L, Bradley-Moore P. R, Casella V, Fowler J. S, Greenberg D, Ido T, Lambrecht R. M, MacGregor R, Mantescu C, Neirinckx R, Som P, Wolf A. P, Wodinsky I, Meany K. Distribution of I8F-5-FU in turmor-bearing mice and rats. Int. J. Nucl. Med. Biol 5: 19-28 1978;
  • 15 Shani J, Berman J. A, Wolf W. Autoradiographic distribution studies of 2-14C-5-FU following oral or IV administration in mice bearing solid Sarcoma-180. J. Pharm. Sci 67: 344-347 1978;
  • 16 Shani J, Young D, Siemsen J. K, Chlebowski R. T, Bateman J. R, Schlesinger T, Wolf W. Dosimetry and preliminary human studies of 18F-5-FU. Int. J. Nucl. Med. Biol. In Press
  • 17 Vine E. N, Young D, Vine W. H, Wolf W. An improved synthesis of 18F-5-FU. Int. J. Appl. Rad. Isotopes 30: 401-405 1979;