Nuklearmedizin 1981; 20(03): 148-155
DOI: 10.1055/s-0037-1620731
Originalarbeiten – Original Articles
Schattauer GmbH

Stoffwechseluntersuchung am Herzen mit 123J-Fettsäuren und 11C-Methylglukose

Studies of Cardiac Metabolism with 123I-Labelled Fatty Acids and 11C-Methylglucose
K. Vyska
1   Aus dem Institut für Medizin und dem Institut für Nuklear-Chemie der Kernforschungsanlage
,
A. Höck
1   Aus dem Institut für Medizin und dem Institut für Nuklear-Chemie der Kernforschungsanlage
,
C. Freundlieb
1   Aus dem Institut für Medizin und dem Institut für Nuklear-Chemie der Kernforschungsanlage
,
V. Becker
1   Aus dem Institut für Medizin und dem Institut für Nuklear-Chemie der Kernforschungsanlage
,
A. Schmid
1   Aus dem Institut für Medizin und dem Institut für Nuklear-Chemie der Kernforschungsanlage
,
L. E. Feinendegen
1   Aus dem Institut für Medizin und dem Institut für Nuklear-Chemie der Kernforschungsanlage
,
G. Kloster
*   Jülich, Jülich, Bundesrepublik Deutschland
,
G. Stöcklin
*   Jülich, Jülich, Bundesrepublik Deutschland
› Author Affiliations
Further Information

Publication History

Eingegangen: 12 January 1981

Publication Date:
10 January 2018 (online)

Um die extern erfaßbaren Veränderungen im myokardialen Stoffwechsel der freien Fettsäuren und der Glukose bei Ischämie und Kardiomyopathie zu charakterisieren, wurde ω-123J-Heptadekansäure (Stearinsäure-Analog), 75Br-Phe-nylpentadekansäure und 3–0–11C-Methyl-D-Glucose als Indikatoren benutzt. Es konnte gezeigt werden, daß mindestens zwei unterschiedliche pathophysiologische Situationen im Stoffwechsel der freien Fettsäuren existieren können. Durch die Störungen der Akkumulationsmechanismen ist die Verfügbarkeit der freien Fettsäuren für die Energieproduktion im Myokard reduziert (diese Störungen werden als Änderungen in der Indikatorakkumulation erkannt). Durch die Störungen der Abbaumechanismen der Fettsäuren wird die Fähigkeit der myokardialen Zelle, die freien Fettsäuren zu verwerten, reduziert (diese Störungen werden als Veränderungen in den Indikatoreliminationsraten erkannt). Im Gegensatz zur koronaren Herzerkrankung konnte bei Kardiomyopathie keine Korrelation zwischen Bereichen veränderter Indikatorakkumulation und pathologischer Indikatoreliminationsraten gefunden werden. Die 11C-Methylglukose erwies sich als ein sensitiver Indikator, der die in-vivo-Beurteilung des Zustandes der Zellmembran-gebundenen Transportsysteme ermöglicht.

To characterize externally detectable changes in the myocardial metabolism of free fatty acids (FFA) and glucose, which are associated with ischemia and cardiomyopathy, ω-123I-heptadecanoic acid (stearic acid analogue), 75Br-phenylpenta-decanoic acid, and 3–0–11C-methyl-D-glucose were used as indicators. It could be demonstrated that in the metabolism of free fatty acids at least two different patho-physiological situations may exist. Disturbances in the mechanism of the accumulation of free fatty acids lead to a decrease of the amount of the free fatty acids which are available for energy production (these disturbances can be recognized as indicator accumulation defects). Disturbances associated with the mechanism of free fatty acid catabolism lead to a decrease of the ability of the myocardial cell to utilize the free fatty acids (these disturbances can be recognized as changes in indicator elimination rates). Whereas in ischaemic heart disease, the areas with altered FFA accumulation correlate with the areas of altered FFA-elimination, no correlation was found in the case of cardiomyopathy. The “C-methylglucose seems to be an excellent indicator for the in-vivo assessment of the function of transport systems in the myocardial cell membrane.

 
  • Literatur

  • 1 Ballard F. B, Danfarth W. H, Neagle S. et al. Myocardial metabolism of fatty acids. J. clin. Invest 39: 717-721 1960;
  • 2 Bing R. J. Metabolic activity of the intact heart. Amer. J. Med 30: 679-691 1961;
  • 3 Cheung J. Y, Conover C, Regen D. M. et al. Effect of insulin on kinetics of sugar transport in heart muscle. Amer. J. Physiol 250: E70-E78 1973;
  • 4 Daus H. J, Reske S. N, Vyska K. et al. Pharmacokinetics of ω-[p-131I-phenyl]-pentadecanoic acid in heart. 18th Int. Ann. Meet., Europ. Soc. of Nucl. Med Nürnberg, September 1980
  • 5 De Haan R. L, Field J. Mechanism of cardiac damage in anoxia. Amer. J. Physiol 197: 449-453 1959;
  • 6 Evans J. R. Importance of fatty acid in myocardial metabolism. Circ. Res 15 (02) Suppl. 96-106 1964;
  • 7 Evans J. R, Gunton R. W, Baker R. G. et al. Use of radioiodinated fatty acids for photoscans of the heart. Circ. Res 16: 1-10 1965;
  • 8 Evans J. R, Opie L. H, Shipp J. C. Metabolism of palmitic acid in perfused rat heart. Amer. J. Physiol 205: 766-770 1963;
  • 9 Freundlieb C, Höck A, Vyska K. et al. Nuclearmedizinische Analyse des Fettsäureumsatzes im Myokard. In: Nuklearmedizin und Biokybernetik. Hrsgb. Oeff K, Schmidt H. A. E. Medicoinformationsdienste; Berlin: 415-419 1978
  • 10 Freundlieb C, Höck A, Vyska K. et al. Myocardial imaging and metabolic studies with [17–123-I]-iodoheptadecano-ic acid. J. nucl. Med 21: 1043-1050 1980;
  • 11 Gallagher B. M, Ansaa A, Atkins H. et al. Radiopharmaceuticals. XXVII. 18F-labeled 2-deoxy-2-fluoro-D-glucose as a radiopharmaceutical for measuring regional myocardial glucose metabolism in vivo: tissue distribution and imaging studies in animals. J. nucl. Med 18: 990-996 1977;
  • 12 Goldstein R. A, Klein M. S, Welch M. J. et al. External assessment of myocardial metabolism with C-ll palmitate in vivo. J. nucl. Med 21: 342-348 1980;
  • 13 Gunton R. W, Evans J. R, Baker R. G. et al. Demonstration of myocardial infarction by photoscans of the heart in man. Amer. J. Cardiol 16: 482-487 1965;
  • 14 Harris P, Gloster J. Effects of acute hypoxia on lipid synthesis in the rat. Cardiology 56: 43-47 1971;
  • 15 Höck A, Freundlieb C, Vyska K. et al. The metabolism of ω-123I-heptadecanoic acid in patients with heart disease. J. nucl. Med 21: P90 1980;
  • 16 Hoffman E. J, Phelps M. E, Weiss E. S. et al. Transaxial tomographic imaging of canine myocardium with 11C-palmitic acid. Nucl. Med 18: 57-61 1977;
  • 17 Idell-Wenger J. A, Grutyohann L. W, Neely J. R. Coenzyme A and carnithine distribution in normal and ischemic hearts. J. biol. Chem 25: 4310-4318 1978;
  • 18 Kloster G, Müller-Platz C, Laufer P. 3-[11C]-Methyl-D-glucose a potential agent for regional cerebral glucose utilisation studies. 17th Int. Ann. Meet. of the Soc. of Nucl. Med.. Innsbruck 1979
  • 19 Kupfernagel C. Qualitätskontrolle und Pharmakokinetik 14C-, 18F-, 34mCl-, 77Br- und 123I-markierter Fettsäuren. Berichte der Kernforschungsanlage Jülich. Jül-1551 1978
  • 20 Machulla H. J, Stoecklin G, Kupfernagel Ch. et al. Comparative evaluation of fatty acids labeled with C-11, Cl-34m, Br-77, and I-123 for metabolic studies of the myocardium: concise communication. J. nucl. Med 19: 298-302 1978;
  • 21 Miller H. I, Gold M, Spitzer J. J. Removal and mobilization of individual free fatty acids in dogs. Amer. J. Physiol 205: 766-770 1963;
  • 22 Most A. A, Brachfeld N, Borlin R. et al. Free fatty acid metabolism of the human heart at rest. J. clin. Invest 48: 1177 1969;
  • 23 Nakahara H. T, Özand P. Studies of tissue permeability. IX. The effect of insulin on the penetration of 3-Methyl-glucose in frog muscle. J. biol. Chem 238: 40-49 1963;
  • 24 Opie L. H. Metabolism of the heart in health and disease. Amer. Heart J 76: 685-698 1968;
  • 25 Phelps M. E, Hoffman E. J, Selin C. et al. Investigation of [18F]-2-fluoro-2-deoxyglucose for the measurement of myocardial glucose metabolism. J. nucl. Med 19: 1311-1319 1978;
  • 26 Poe N. D, Robinson G. D, MacDonald N. S. Myocardial extraction of labeled long-chain fatty acid analogues. Proc. Soc. exp. Biol. Med 148: 215-218 1975;
  • 27 Poe N. D, Robinson G. D. J, Graham L. S. et al. Experimental basis for myocardial imaging with 123I-labeled hexa-decenoic acid. J. nucl. Med 17: 1077-1082 1976;
  • 28 Reeves J. Stimulation of 3-0-Methylglucose transport by aerobiosis in rat thymocytes. J. biol. Chem 250: 9413-9420 1975;
  • 29 Robinson G. D, Lee A. W. Radioiodinated fatty acids for heart imaging: Iodine monochloride addition compared with iodide replacement labeling. J. nucl. Med 16: 17-21 1975;
  • 30 Rothlin M. E, Bing R. J. Extraction and release of individual free fatty acids by the heart and fat depots. J. clin. Invest 40: 1380-1386 1961;
  • 31 Schelbert H. R, Henze E, Phelps M. E. Emission tomography of the heart. Sem. Nucl. Med 10: 355-373 1980;
  • 32 Seminars in Nuclear Medicine. Vol. 9, No. 4 (1979), and Vol. 10, No. 1 and 2 (1980).
  • 33 Sobel B. E. Assuming the current needs of cardiology. J. nucl. Med 20: 589 1979; (abs.)
  • 34 Sobel B. E, Weiss E. S, Welch M. J. et al. Detection of remote myocardial infarction in patients with positron emission transaxial tomography and intravenous 11C-palmitate. Circulation 55: 853-857 1977;
  • 35 Stein O, Stein Y. Metabolism of fatty acids in the isolated heart. Biochim. Biophys. Acta 70: 517-530 1963;
  • 36 Stein O, Stein Y. Lipid synthesis, intracellular transport and storage. III. Electronmicroscopic radioautoradio-graphic study of the rat heart perfused with tritiated oleic acid. J. Cell Biol 36: 63-77 1968;
  • 37 Stöcklin G. Recent radiochemical developments in production and application of radiodiagnostics for cardiology. Second Int. Congr. World Federat. of Nucl. Med. and Biol.. Washington: September 1978
  • 38 Stöcklin G, Coenen H. H, Hammond H. F. et al. ω-(p-bromophenyl-)pentadecanoic acid a new potential agent for myocardial imaging. J. nucl. Med 21: P58 1980;
  • 39 Ter-Pogossian M. M, Klein M. S, Markham J. et al. Regional assessment of myocardial metabolic integrity in vivo by positron-emission tomography with 11C labeled palmitate. Circulation 61: 242-255 1980;
  • 40 Vyska K. Radioactively labelled metabolic substrates: A new tool for nuclear medical assessment of myocardial metabolism in vivo. J. radioanalyt. Chem 57: 575-581 1980;
  • 41 Vyska K, Freundlieb C, Höck A. et al. Myocardial imaging and measurement of myocardial fatty acid metabolism using ω-123I-heptadecanoic acid. In: Advances in Clinical Cardiology Vol. 1: Quantification of Myocardial Ischemia. Eds. Kreuzer H, Parmley W. W, Rentrop P, Heiss H. W. G. Witzstrock; New York: pp. 422-436 1980
  • 42 Vyska K, Höck A, Freundlieb C. et al. (3-C11)-Methylglu-cose; a promising agent for in vivo assessment of function of myocardial cell membrane. J. nucl. Med 21: P56-57 1980;
  • 43 Vyska K, Freundlieb C, Höck A. et al. Myocardial scintigraphy with free fatty acids and glucose (in press).
  • 44 Vyska K, Höck A, Freundlieb C. et al. Regional myocardial metabolism of free fatty acids (in press).
  • 45 Weiss E. S, Ahmed S. A, Welch M. J. et al. Quantification of infarction in cross sections of canine myocardium in vivo with positron emission transaxial tomography and 11C palmitate. Circulation 55: 66-73 1977;
  • 46 Weiss E. S, Hoffman E. J, Phelps M. E. et al. External dectection of altered metabolism of 11C-labelled substrates in ischemic myocardium. Clin. Res 23: 383A 1975;
  • 47 Weiss E. S, Hoffman E. J, Phelps M. E. et al. External detection and visualisation of myocardial ischemia with 11C-substrates in vitro and in vivo. Circ. Res 39: 24-32 1976;
  • 48 Whitesell R. R, Gliemann J. Kinetic parameters of transport of 3-0-Methylglucose and glucose in adipocytes. J. biol. Chem 25: 5276-5283 1979;
  • 49 Zierler L. K. Fatty acids as substrates for heart and sceletal muscle. Circ. Res 38: 459-463 1976;