Phlebologie 2012; 41(01): 13-17
DOI: 10.1055/s-0037-1621796
Originalarbeit
Schattauer GmbH

Microscopic analysis of lymphatic vessels in primary lymphedematous skin

Mikroskopische Analyse von Lymphgefäßen in primär lymphödematöser Haut
X. Wu
1   Lymphology Center of Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
,
R. Li
2   Department of Osthopaedcs, the Second Hospital of Fuzhou, Fujian 35000, China
,
N. Liu
1   Lymphology Center of Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
› Author Affiliations
Further Information

Publication History

Received:24 July 2011

Accepted:20 January 2012

Publication Date:
30 December 2017 (online)

Zusammenfassung

Hintergrund: Obwohl das Lymphsystem der Haut bei den primären Lymphödemen einbezo-gen ist, werden die Morphologie und die An-ordnung der Lymphgefäße in der betroffenen Hautregion der unteren Extremität bei dieser Krankheit wenig beschrieben und verstanden. Unser Ziel war es, die strukturellen und räumlichen Eigenschaften der Lymphgefäße in der be-troffenen Hautregion der unteren Extremität bei Patienten mit primären Lymphödemen zu charakterisieren und ihre Rolle bei dieser Krankheit herauszuarbeiten.

Methoden: Es wurden Hautbiopsien der unteren Extremität von 14 Patienten mit primärem Lymphödem sowie von 10 altersmäßig ent-sprechenden Kontrollen entnommen und immunhistochemisch sowie mikroskopischeuntersucht unter Verwendung von podoplanin-Antikörpern (einem lymphatischen Marker). Die Lymphgefäße jedes Abschnittes wur-den gezählt und der innere luminale Durchmesser bestimmt.

Ergebnisse: Die Gesamtdichte und der innere luminale Durchmesser der Lymphgefäße in der betroffenen Haut der untereren Extremität der Patienten mit primärem Lymph-ödem waren verglichen mit Kontrollen größer (p=0,004 bzw. p=0,014 ). Im oberen Bereich der Lederhaut bis 300 μm war die Dichte der Lymphgefäße der Lymphödem-Patienten niedriger im Vergleich zu den Kontrollen (p=0,00). Demgegenüber war die Dichte der Lymphgefäße in der tiefen Lederhaut (>300 μm) bei primärem Lymphödem höher als bei den Kontrollen (p=0,00).

Zusammenfassung: Die betroffene Haut der unteren Extremität der Primärlymphödem-Pa-tienten wird gekennzeichnet durch die Hyper-plasie und Dilatation von Lymphvasculaturen hauptsächlich in der tiefen Lederhaut, was auf eine pathogene Rolle bei der Entstehung und der klinischen Manifestation der Krankheit hindeuten könnte.

Summary

Background: Although skin lymphatic system is implicated in primary lymphedema, the morphology and distribution of lymphatic vessels in the affected skin of the lower extremity of this disease are less described and understood. Our aim was to characterize the structural and distributional features of lymphatic vessels in the affected skin of the lower extremity of primary lymphedema patients and pinpoint their role in this disease.

Methods: Skin biopsies of lower limb of 14 patients with primary lymphedema and 10 age-matched controls were performed for immunohistochemistry microscopic studies using podoplanin (a lymphatic marker) antibodies. All lymphatic vessels present in each section were counted and inner luminal diameter was measured by software.

Results: The total density and inner luminal diameter of lymphatic vessels in the affected skin of the lower extremity of primary lymphedema patients were greater compared with controls (p=0.004, p=0.014, respectively). However, in the superficial 300 μm band of dermis, the density of lymphatic vessels in primary lymphedema was lower with respect to controls (p=0.00). In contrast, in deep dermis (>300 μm), the density of lymphatic vessels in primary lymphedema was significantly higher compared with controls (p=0.00).

Conclusion: The affected skin of the lower extremity of primary lymphedema patients is characterized by hyperplasia and dilation of lymphatic vasculature mainly located in deep dermis, which might have a pathogenic role in the evolution and in the clinical manifestations of the disease.

 
  • References

  • 1 Rockson SG. Lymphedema. Am J Med 2001; 110: 288-295.
  • 2 Verstraeten VL, Holnthoner W, van Steensel MA. et al. Functional analysis of FLT4 mutations associated with Nonne-Milroy lymphedema. J Invest Dermatol 2009; 129: 509-512.
  • 3 Petrova TV, Karpanen T, Norrmén C. et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 2004; 10: 974-981.
  • 4 Irrthum A, Devriendt K, Chitayat D. et al. Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosislymphedema-telangiectasia. Am J Hum Genet 2003; 72: 1470-1478.
  • 5 Alders M, Hogan BM, Gjini E. et al. Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans. Nat Genet 2009; 41: 1272-1274.
  • 6 Saban MR, Mémet S, Jackson DG. et al. Visualization of lymphatic vessels through NF-kappaB activity. Blood 2004; 104: 3228-3230.
  • 7 Ferrell RE, Baty CJ, Kimak MA. et al. GJC2 missense mutations cause human lymphedema. Am J Hum Genet 2010; 86: 943-948.
  • 8 Schook CC, Mulliken JB, Fishman SJ. et al. Primary lymphedema: clinical features and management in 138 pediatric patients. Plast Reconstr Surg 2011; 127: 2419-2131.
  • 9 Radhakrishnan K, Rockson SG. The clinical spectrum of lymphatic disease. Ann N Y Acad Sci 2008; 1131: 155-184.
  • 10 Warren AG, Brorson H, Borud LJ, Slavin SA. Lymphedema: a comprehensive review. Ann Plast Surg 2007; 59: 464-472.
  • 11 Breiteneder-Geleff S, Soleiman A. et al. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 1999; 154: 385-394.
  • 12 Baluk P, Fuxe J, Hashizume H. et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 2007; 204: 2349-2362.
  • 13 Kahn HJ, Marks A. A new monoclonal antibody, D2–40, for detection of lymphatic invasion in primary tumors. Lab Invest 2002; 82: 1255-1257.
  • 14 Partsch H, Urbanek A, Wenzel-Hora B. The dermal lymphatics in lymphoedema visualized by indirect lymphography. Br J Dermatol 1984; 110: 431-438.
  • 15 Bollinger A, Amann-Vesti BR. Fluorescence microlymphography: diagnostic potential in lymphedema and basis for the measurement of lymphatic pressure and flow velocity. Lymphology 2007; 40: 52-62.
  • 16 Berens V, Rautenfeld D, Lubach I. New techniques of demonstrating lymph vessels in skin biopsy specimens and intact skin with the scanning electron microscope. Ariii DenmUol Kes 1987; 279: J27-34.
  • 17 The diagnosis and treatment of peripheral lymphedema. 2009 Consensus document of the International Society of Lymphology. Lymphology 2009; 42: 51-60.
  • 18 Xu H, Edwards J, Banerji S, Prevo R, Jackson DG, Athanasou NA. Distribution of lymphatic vessels in normal and arthritic human synovial tissues. Ann Rheum Dis 2003; 62: 1227-1229.
  • 19 Kajiya K, Detmar M. An important role of lymphatic vessels in the control of UVB-induced edema formation and inflammation. J Invest Dermatol 2006; 126: 920-922.
  • 20 Suami H, Pan WR, Taylor GI. Changes in the lymph structure of the upper limb after axillary dissection: radiographic and anatomical study in a human cadaver. Plast Reconstr Surg 2007; 120: 982-991.
  • 21 Clavin NW, Avraham T, Fernandez J. et al. TGFbeta1 is a negative regulator of lymphatic regeneration during wound repair. Am J Physiol Heart Circ Physiol 2008; 295: H2113-2127.
  • 22 Ibba-Manneschi L, Niissalo S, Milia A.F. Variation of neuronal nitric oxide synthase in systemic sclerosis skin. Arthritis Rheum 2006; 54: 202-213.
  • 23 Rossi A, Sozio F, Sestini P. et al. Lymphatic and blood vessels in scleroderma skin, a morphometric analysis. D Hum Pathol 2010; 41: 366-374.
  • 24 Foldi M, Fold i E. Die komplexe physikalische Entstauungs-Therapie des Lymphödems. Phlebol Proktol 1984; 13: 79