Osteologie 2015; 24(03): 163-169
DOI: 10.1055/s-0037-1622064
Implantat und Knochen
Schattauer GmbH

Biomaterialien und Oberflächen- beschichtungen von Implantaten zur Verbesserung der Implantat- Knochen-Interaktion

Biomaterials and implant surfaces to improve bone-Implant interaction
A.A. Kurth
1   Themistocles Gluck hospital, Fachklinik für Gelenk-, Wirbelsäulen- und Knochenerkrankungen, Ratingen
,
K. Michalke
1   Themistocles Gluck hospital, Fachklinik für Gelenk-, Wirbelsäulen- und Knochenerkrankungen, Ratingen
› Author Affiliations
Further Information

Publication History

eingereicht: 17 August 2015

angenommen: 20 August 2015

Publication Date:
02 January 2018 (online)

Zusammenfassung

Seit mehreren Jahrzehnten werden metallische und keramische Implantate in den menschlichen Knochen eingebracht, um dort bestimmte Aufgaben und Funktionen dauerhaft zu erfüllen. Sie sollen über mehrere Jahre oder Jahrzehnte im menschlichen Organismus als Gellenkersatz oder Zahnersatz dienen. Um ihre Funktion zu erfüllen, müssen sie vom Körper angenommen und in den Knochen eingebaut werden. Diesen Vorgang nennt man Osseointegration. Das bedeutet, dass sich zwischen dem Knochen und der Implantatoberfläche ein fester Verbund ausbildet. Demzufolge sind bestimmte Voraussetzungen an das jeweilige Implantat, wie Biokompatibilität und mechanische Festigkeit gestellt. Der Kurz- und Langzeiterfolg von Implantaten ist abhängig von der Stabilität der Implantatverankerung im Knochengewebe. Da die Oberfläche eines Implantats in Kontakt mit dem umliegenden Gewebe steht, spielen Oberflächeneigenschaften wie z. B. chemische Zusammensetzung, Topografie, Rauigkeit, Porosität oder Oberflächenenergie eine entscheidende Rolle. Über die vergangenen Jahrzehnte wurde auf diesen Gebieten viel wissenschaftlicher Aufwand betrieben, um die Osseointegration von Implantaten zu beschleunigen und zu verbessern. Die neuesten Entwicklungen beinhalten bioaktive Oberflächenbearbeitung, die Verwendung von extrazellulären Matrixmolekülen und Wachstumsproteine wie z. B. BMPs, die auf die Implantatoberfläche aufgebracht werden. Ein Teil der neuen Methoden befindet sich in der klinischen Erprobung und ein Teil wird bereits sehr erfolgreich in der klinischen Routine der Endoprothetik eingesetzt.

Summary

For several decades, metallic and ceramic implants are used in human bones to meet there specific tasks and functions as joint replacements or teeth. They are intended to survive in the human body for several years or even decades. In order to perform their function they need to be accepted by the body and incorporated into the bone. This process is called osseointegration. This means forming a firm bond between the bone and the implant surface. Consequently, certain conditions are required by the used implant like biocompatibility and mechanical strength. The short and long term outcome of implants depends on the stability of the implant anchorage in the bone tissue. Since the surface of an implant is in contact with the surrounding enviroment, surface properties such as chemical composition, roughness, porosity, surface energy play a decisive role. Over the past few decades much scientific effort has been made in these areas, to promote and improve the osseointegration of implants. Recent developments include bioactive surface treatment, the use of extracellular matrix molecules, and growth factors such as BMPs, which are incorporated in the implant surface. Partly, the new developments of surface treatments are in clinical trials and some are already very successfully used in clinical routine in joint replacement.

 
  • Literatur

  • 1 Saini M. et al. Implant biomaterials: A comprehensive review. World J Clin Cases 2015; 03: 52.
  • 2 Vandrovcova M. et al. Adhesion and differentiation of osteoblasts on surface modified materials developed for bone implants. Physiol Res 2011; 60: 403.
  • 3 Albrektson et al. Osteoinduction, osteoconduction and osteointegration. Eur Spine J 2001; 10: S96.
  • 4 Rammelt S. et al. Coating of titanium implants with collagen, RDG peptide and chondroitin sulfate. Biomaterials 2011; 27: 5561.
  • 5 Schwartz Z. et al. Implant surface characteristics modulate differentiation behavior of cells in the osteoblastic lineage. Adv Dent Res 1999; 13: 38.
  • 6 Olivares-Navarretr R. et al. Direct and indirect effects of microstructured titanium substrate on the induction of mesenchymal stem cell differentiation towards the osteoblast lineage. Biomaterials 2010; 31: 2728.
  • 7 Dimitriou R. et al. Current Concepts of molecuar aspects of bone healing. Injury 2005; 36: 1392.
  • 8 Junker R. et al. Effects of implant surface coating and composition on bone integration: A systemic review. Clin Oral Implant Res 2009; 20: 185.
  • 9 Farzin A. et al. Comparative evaluation of biocompatibility of dense nanostructured and microstructured Hydroxyapatite/Titanium composites. Mater Sci Eng Mater Biol Appl 2013; 33: 2251.
  • 10 Dalby M. et al. Osteoprogenitor response to defined topographies with nanoscale depths. Biomaterials 2006; 27: 1306.
  • 11 Palin E. et al. Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation. Nanotechnology 2005; 16: 1088.
  • 12 Webster TJ. et al. Mechanisms of enhanced osteo- blast adhesion on nanophase alumina involve vitronectin. Tissue Eng 2001; 07: 291.
  • 13 Zhao G. et al. Requirement for both micron- and submicron scale structure for synergistic responses of osteoblasts to substrate surface enery and topography. Biomaterials 2007; 28: 2821.
  • 14 Gittens RA. et al. Differential responses of osteo- blast lineage cells to nanotopographically-modified, microroughend titanium-aluminum-vanadium alloy surfaces. Biomaterials 2012; 33: 8986.
  • 15 Ryan G. et al. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 2006; 27: 2651.
  • 16 Yoshikawa H. et al. Interconnected porous hydroxyapatite ceramics for bone tissue enigneering. J R Soc Interface 2009; 06: S341.
  • 17 Bobyn JD. et al. The optimum pore size fort he fixation of porous surfaces metal implants by he ingrowth of bone. Clin Orthop Rel Res 1980; 150: 263.
  • 18 Fujibayashi S. et al. Osteoinduction of porous bioactive titanium metall. Biomaterials 2004; 25: 443.
  • 19 Chang BS. et al. Osteoconduction at porous hydroxyapatite with varius pore configuration. Biomaterials 2000; 21: 1291.
  • 20 Geesink R. et al. Chemical implant fixation using hydroxyl-apatite coatings. using hydroxyl-apatite coatings on titanium substrates. Clin Orthop Relat Res 1987; 225: 147.
  • 21 Voigt JD. et al. Hydroxyapatite (HA) coating appears tob e of benefit for implant durability of tibial components in primary total knee arthroplasty. Acta Orthop 2011; 82: 448.
  • 22 Epinette JA. et al. Uncemented stems in hip replacement – Hydroxyapatite or plain porous: Does it matter? Based on a prospective study of HA Omnifit stems at 15 years minimum follow up. Hip Int 2008; 18: 69.
  • 23 Goosen JH. et al. Porous coated femoral components with or without hydroxyapatite in primary uncemented total hip arthroplasty: A systemic review of randomized controlled trials. Arch Orthop Traum Surg 2009; 129: 1165.
  • 24 Gandhi R. et al. Hydroxyapatide coated femoral stems in primary total hip arthroplasty: A metaanalysis. J. Arthroplasty 2009; 24: 38.
  • 25 Lazarinis S. et al. Increased risk of revision of acetabular cups with hydroxyapatite. Acta Orthop 2010; 81: 53.
  • 26 Lazarinis S. et al. Effects of hydroxyapatite coating on survival of an uncemented femoral stem. A swedish hip arthroplasty register study on 4772 hips. Acta Orthop 2011; 82: 399.
  • 27 Barrere F. et al. Bone regeneration: Molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomed 2006; 01: 317.
  • 28 LeGeros RZ. Properties of osteoconductive biomaterials: Calcium phosphates. Clin Orthop Rel Res 2002; 395: 81.
  • 29 Mohseni E. et al. Comparative investigations on the adhesion of hydroxyapatite coating on Ti-6AL-4V implant. A review paper. Int J Adhes 2014; 48: 238.
  • 30 Le Guehence L. et al. Surface treatments of titanium dental implants for rapid osteointegration. Dent Mater 2007; 73: 104.
  • 31 Kendorff DO. et al. Eleven years results oft he anatomic coated CFP stem in primary total hip arthroplasty. J Arthroplasty 2013; 28: 1047.
  • 32 Johnsson MS. et al. The role of brushite and octa- calcium phosphate in apatite formation. Crit Rev Oral Biol Med 1992; 03: 61.
  • 33 Ince A. et al. In vitro investigation of orthopaedic titanium-coated and brushite coated surfaces using human osteoblasts in the presence od gentamycin. J Arthroplasty 2008; 23: 762.
  • 34 Habibivic P. et al. Osteoinduction by biomaterilas – physicochemical and structural influences. J Biomed Mater Res A 2006; 77: 747.
  • 35 Rupp F. et al. Enhancing surface free enery and hydrophilicity though chemical modification of microstructured titanium implant surfaces. J Biomed Mater Res A 2006; 76: 323.
  • 36 Chen XB. et al. Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications. Acta Biomater 2009; 05: 1808.
  • 37 Park JW. et al. Osteoconductivity of hydrophilic microstructered titanium implants with posphate ion chemistry. Acta Biomater 2009; 05: 2311.
  • 38 Viguet-Carin S. et al. The role of collagen in bone strength. Osteoporosis Int 2006; 17: 319.
  • 39 Le Guillion-Buffello D. et al. Additive effect of RDG coating to fuctionalized titanium surfaces on human osteoprogenitor cell adhesion and spreading. Tissue Eng A 2008; 14: 1445.
  • 40 Kroese-Deutman HC. et al. Influence of RDG loaded titanium implants on bone formation in vivo. Tissue Eng 2005; 11: 1867.
  • 41 Verrier S. et al. Function of linear and cyclic RDGcontaining peptites in osteoprogenitor cells adhesion process. Biomaterials 2002; 23: 585.
  • 42 Elmengaard B. et al. In vivo study oft he effect of RDG treatment on bone ongrowth on press fit titanium alloy implants. Biomaterials 2005; 26: 3521.
  • 43 Petrie TA. et al. The effect of integrin-specific bioactive coatings on tissue healing and implant osseointegration. Biomaterials 2008; 29: 2849.
  • 44 Reyes CD. et al. Biomolecular surface coating to enhance orthopaedic tissue healing and integration. Biomaterials 2007; 28: 3228.
  • 45 Davies JE. et al. The role of different scale ranges of surface implant topography on the stability oft he bone/implant interface. Biomaterials 2013; 34: 3535.
  • 46 Sumner DR. et al. Locally delivered rhTGF-beta2 enhanced bone ingrowth ad bone regeneration at local and remote sites of skeletal injury. J Orthop Res 2001; 19: 85.
  • 47 Kimura Y. et al. Controlled release of bone morphogenetic protein-2 enhances recruitment of osteogenic progenitor cells for de novo generation of bone tissue. Tissue Eng A 2010; 16: 1263.
  • 48 Nauth A. et al. Growth factors and bone regeneration: How much bone can we expect?. Injury 2011; 42: 574.
  • 49 Ono I. et al. Efficasy of hydroxyapatite as a carrier for recombinant human bone morphogenetic protein. J Craniofac Surgery 1995; 06: 238.
  • 50 Bae SE. et al. Controlled release of bone morphogenetic protein (BMP)-2 from nanocomplex incorporated on hydroxyapatite-formed titanium surfaces. J Control Release 2012; 160: 676.
  • 51 Dawson E. et al. Recombinant human bone morphogenetic protein-2 on an absorbable collagen sponge with an osteoconductive bulking agent in posterolateral arthrodesis with instrumentation. A prospective randomized trial. J Bone Joint Surg Am 2009; 91: 1604.
  • 52 Hu Y. et al. TiO2 nanotubes as drug nano reservoirs for the regulation of mobility of mesenchymal stem cells. Acta Biomater 2012; 08: 439.
  • 53 Lai M. et al. Surface funtionalization of TiO2 nanotubes with bone morphogenetic protein-2 and its synergistic effect on the differentiation on mesenchymal stem cells. Biomacromolecules 2011; 12: 1097.
  • 54 Kurth AH. et al. The bisphosphonate ibandronate improves implant integration in osteopenic ovariectomized rats. Bone 2005; 37: 204.