Osteologie 2017; 26(01): 13-17
DOI: 10.1055/s-0037-1622080
Schattauer GmbH

Funktionsdiagnostik der Sarkopenie

Functional diagnostics of sarcopenia
L. Seefried
1   Klinische Studieneinheit, Universität Würzburg, Orthopädische Klinik – König-Ludwig-Haus, Würzburg
F. Genest
1   Klinische Studieneinheit, Universität Würzburg, Orthopädische Klinik – König-Ludwig-Haus, Würzburg
› Author Affiliations
Further Information

Publication History

eingereicht: 11 January 2017

angenommen: 21 January 2017

Publication Date:
02 January 2018 (online)


Wie der Knochen, so unterliegt auch die Muskulatur kontinuierlichen Umbauund Adaptionsvorgängen, um so eine permanente Anpassung an wechselnde Einflussfaktoren und Anforderungen und damit die Funktionsfähigkeit des Bewegungsapparat zu gewährleisten. Im Alter begünstigt die verminderte körperliche Aktivität einerseits und sich ändernde metabolische und endokrinologische Rahmenbedingungen andererseits die Entwicklung einer Sarkopenie, wobei im Alltag unter diesem Begriff jenseits des reinen Muskelmasseverlustes auch die für die Patienten entscheidendere Verschlechterung der Muskelkraft und -leistung mitsubsumiert werden. Jenseits einer Quantifizierung der Muskelmasse sind daher funktionelle Untersuchungen essenzieller Bestandteil der Sarkopeniediagnostik. Die Erfassung der Kraft erfolgt meist mittels Handkraftdynamometrie. Alternativen sind die Beinpresse oder die Spirometrie. Der gängigste Test zur Evaluation der Leistung ist die Short Physical Performance Battery (SPPB) mit Erfassung der Gehgeschwindigkeit, einem Aufstehtest und einem Balance-Test, alternativ auch der Timed-upand-go-Test und der 6-Minute-Walk-Test. Eine interessante Alternative scheint die Erfassung der Sprungkraft und -leistung durch die sogenannte Mechanografie.


Muscle as well as bone underly a constant turnover and adaptation process to ensure adjustment to prevailing physical requirements in order to ensure musculoskeletal functionality. In older age, reduced physical activity as well as changing metabolic and endocrinologic conditions foster the development of sarcopenia, a term currently used not only to describe mere loss of muscle mass but rather as a generic term to summarize the entirety of age associated muscle deficits including reduced strength as well as limited physical performance. Thus functional assessment of muscle strength and physical performance are essential components of diagnosing sarcopenia, beyond mere quantification of muscle mass. Assessment of muscle strength is most commonly accomplished with hand-held dynamometry. Alternatively, lower extremity strength can be examined using a leg press measurement, or using respiratory parameters assessed via spirometry. The most common method used for investigating physical performance is the Short Physical Performance Battery (SPPB), which evaluates gait speed, balance and the ability to get in the chair rise test. Additionally, the 6 minute walk test and the Timed Up and Go test can be used to examine physical performance. New and important on a scientific approach is jumping mechanography, measuring ground reaction forces in defined jumping movements.

  • Literatur

  • 1 Bann D, Kuh D, Wills AK. et al. Physical activity across adulthood in relation to fat and lean body mass in early old age: findings from the Medical Research Council National Survey of Health and Development, 1946–2010. American journal of epidemiology 2014; 179 (10) 1197-1207.
  • 2 Rosenberg IH. Sarcopenia: origins and clinical relevance. The Journal of nutrition 1997; 127 (Suppl. 05) 990S-991S.
  • 3 Cruz-Jentoft AJ, Baeyens JP, Bauer JM. et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age and ageing 2010; 39 (04) 412-423.
  • 4 Paddon-Jones D, Short KR, Campbell WW. et al. Role of dietary protein in the sarcopenia of aging. Am J Clin Nutr 2008; 87 (05) 1562S-1566S.
  • 5 Sayer AA, Syddall H, Martin H. et al. The developmental origins of sarcopenia. The journal of nutrition, health & aging 2008; 12 (07) 427-432.
  • 6 Thompson DD. Aging and sarcopenia. J Musculoskelet Neuronal Interact 2007; 07 (04) 344-345.
  • 7 Goodpaster BH, Park SW, Harris TB. et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci 2006; 61 (10) 1059-1064.
  • 8 Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc 2002; 50 (05) 889-896.
  • 9 Clark BC, Manini TM. Functional consequences of sarcopenia and dynapenia in the elderly. Curr Opin Clin Nutr Metab Care 2010; 13 (03) 271-276.
  • 10 Lauretani F, Russo CR, Bandinelli S. et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol (1985) 2003; 95 (05) 1851-1860.
  • 11 Hairi NN, Cumming RG, Naganathan V. et al. Loss of muscle strength, mass (sarcopenia), and quality (specific force) and its relationship with functional limitation and physical disability: the Concord Health and Ageing in Men Project. J Am Geriatr Soc 2010; 58 (11) 2055-2062.
  • 12 Legrand D, Vaes B, Mathei C. et al. The prevalence of sarcopenia in very old individuals according to the European consensus definition: insights from the BELFRAIL study. Age and ageing 2013; 42 (06) 727-734.
  • 13 Doherty TJ. Invited review: Aging and sarcopenia. J Appl Physiol (1985) 2003; 95 (04) 1717-1727.
  • 14 McNeil CJ, Doherty TJ, Stashuk DW, Rice CL. Motor unit number estimates in the tibialis anterior muscle of young, old, and very old men. Muscle & nerve 2005; 31 (04) 461-467.
  • 15 Rolland Y, Czerwinski S, Abellan GVan Kan. et al. Sarcopenia: its assessment, etiology, pathogenesis, consequences and future perspectives. The journal of nutrition, health & aging 2008; 12 (07) 433-450.
  • 16 Bijlsma AY, Meskers CG, Ling CH. et al. Defining sarcopenia: the impact of different diagnostic criteria on the prevalence of sarcopenia in a large middle aged cohort. Age 2013; 35 (03) 871-881.
  • 17 Bioelectrical impedance analysis in body composition measurement: National Institutes of Health Technology Assessment Conference Statement. Am J Clin Nutr 1996; 64 (Suppl. 03) 524S-532S.
  • 18 Kyle UG, Genton L, Slosman DO, Pichard C. Fatfree and fat mass percentiles in 5225 healthy subjects aged 15 to 98 years. Nutrition 2001; 17 (7–8) 534-541.
  • 19 Roubenoff R, Baumgartner RN, Harris TB. et al. Application of bioelectrical impedance analysis to elderly populations. J Gerontol A Biol Sci Med Sci 1997; 52 (03) M129-M136.
  • 20 Kyle UG, Genton L, Karsegard L. et al. Single prediction equation for bioelectrical impedance analysis in adults aged 20–94 years. Nutrition 2001; 17 (03) 248-253.
  • 21 Chien MY, Huang TY, Wu YT. Prevalence of sarcopenia estimated using a bioelectrical impedance analysis prediction equation in community-dwelling elderly people in Taiwan. J Am Geriatr Soc 2008; 56 (09) 1710-1715.
  • 22 Al Snih S, Markides KS, Ottenbacher KJ, Raji MA. Hand grip strength and incident ADL disability in elderly Mexican Americans over a seven-year period. Aging clinical and experimental research 2004; 16 (06) 481-486.
  • 23 Chen HI, Kuo CS. Relationship between respiratory muscle function and age, sex, and other factors. J Appl Physiol (1985) 1989; 66 (02) 943-948.
  • 24 Kim J, Davenport P, Sapienza C. Effect of expiratory muscle strength training on elderly cough function. Arch Gerontol Geriatr 2009; 48 (03) 361-366.
  • 25 Bean JF, Kiely DK, Herman S. et al. The relationship between leg power and physical performance in mobility-limited older people. J Am Geriatr Soc 2002; 50 (03) 461-467.
  • 26 Foldvari M, Clark M, Laviolette LC. et al. Association of muscle power with functional status in community-dwelling elderly women. J Gerontol A Biol Sci Med Sci 2000; 55 (04) M192-M199.
  • 27 Buchner DM, Larson EB, Wagner EH. et al. Evidence for a non-linear relationship between leg strength and gait speed. Age and ageing 1996; 25 (05) 386-391.
  • 28 Guralnik JM, Ferrucci L, Pieper CF. et al. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci 2000; 55 (04) M221-M231.
  • 29 Working Group on Functional Outcome Measures for Clinical T. Functional outcomes for clinical trials in frail older persons: time to be moving. J Gerontol A Biol Sci Med Sci 2008; 63 (02) 160-164.
  • 30 Guralnik JM, Simonsick EM, Ferrucci L. et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. Journal of gerontology 1994; 49 (02) M85-M94.
  • 31 Perera S, Mody SH, Woodman RC, Studenski SA. Meaningful change and responsiveness in common physical performance measures in older adults. J Am Geriatr Soc 2006; 54 (05) 743-749.
  • 32 Kwon S, Perera S, Pahor M. et al. What is a meaningful change in physical performance? Findings from a clinical trial in older adults (the LIFE-P study). The journal of nutrition, health & aging 2009; 13 (06) 538-544.
  • 33 Mathias S, Nayak US, Isaacs B. Balance in elderly patients: the “get-up and go” test. Arch Phys Med Rehabil 1986; 67 (06) 387-389.
  • 34 Siglinsky E, Krueger D, Ward RE. et al. Effect of age and sex on jumping mechanography and other measures of muscle mass and function. J Musculoskelet Neuronal Interact 2015; 15 (04) 301-308.