Osteologie 2017; 26(03): 164-170
DOI: 10.1055/s-0037-1622098
Originalund Übersichtsarbeiten
Schattauer GmbH

Sarkopenie und “Sarcopenic Obesity” in Nordbayern

Einfluss unterschiedlicher Vorgaben und Messprotokolle auf die PrävalenzrateSarcopenia and sarcopenic obesity in Northern BavariaImpact of different assessment protocols on prevalence rate
W. Kemmler
1   Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen
S. von Stengel
1   Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen
› Author Affiliations
Further Information

Publication History

eingereicht: 13 January 2017

angenommen: 19 April 2017

Publication Date:
02 January 2018 (online)



Ziel der Untersuchung war es, die Prävalenz von Sarkopenie (SA) und Sarcopenic Obesity (SO) bei selbstständig lebenden Männern 70+ zu erfassen und die korrespon-dierende Varianz unterschiedlicher Vorgaben und messtechnischer Varianten zu evaluieren.

Material und Methoden

Insgesamt 965 Männer 70+ aus Nordbayern, Deutschland, wurden in die Untersuchung eingeschlossen. Die SA-Prävalenzrate wurde über die Definition der European Working Group on Sarcopenia in Older People (EWGSOP) diagnostiziert. Als Adipositaskriterium wurde ein Körperfettgehalt von > 28 % festgelegt. Die der EWGSOP-Definition inhärente Varianz wurde über verschiedene Grenzwerte und über messtechnische Variationen der funktionellen SA-Komponenten eingeschätzt.


Die Prävalenz der SA lag bei 5,1 %, die der SO bei 3,8 %. Die Varianz der SA- und SO-Prävalenz lag bei Anwendung der verschiedenen Vorgaben und messtechnischer Details bei 0,9 %–6,0 %; bzw. 0,5 %–4,1%.


Die Prävalenz der Sarkopenie gemäß EWGSOP liegt in einem etwas höheren Bereich als in Europäischen Nachbarländern. Die Anwendung unterschiedlicher Vorgaben und messtechnischer “Details” führt zu signifikanten Variationen der Prävalenzen, was die Notwendigkeit einer Standardisierung verdeutlicht.

Trial Registration

ClinicalTrials.gov: NCT2857660



Due to current demographic trends Sarcopenia and Sarcopenic Obesity (SO) is becoming increasingly important for our fast aging societies. Indeed, the synergistic negative effect of decreased muscle mass combined with increased fat mass may be the most prominent component of disability, frailty and morbidity in older people. However, with respect to varying definitions, components and cut-off points it is difficult to determine the prevalence of both “conditions” in a given population. The aim of the study was thus to determine the prevalence of Sarcopenia und Sarcopenic Obesity in communitydwelling caucasian men 70+ from Northern Bavaria and to determine the inherent variation of the European Working Group on Sarcopenia in Older People (EWGSOP) definition using varying approaches, cut-off points and test protocols.

Material and methods

Nine hundred sixty-five (965) community-dwelling caucasian men 70+ living in the area of Erlangen-Nürn-berg, Northern Bavaria, Germany, were included into the project. Prevalence of sarcopenia was diagnosed using the definition of the EWGSOP and applying the T-Score based method. Obesity was determined using body-fat-based approaches with a cutoff point of 28 % as applied for the present calculation. Different EWGSOP based suggestions for the diagnosis of low muscle mass along with varying cut-points for body-fat were calculated and compared. In parallel, different methods to evaluate functional Sarcopenia parameters were applied to estimate the variation within the EWGSOP definition from applying different approaches.


Using the up to date most frequently applied EWGSOP valuation, amongst the present cohort 5.1 % were classified as sarcopenic, the corresponding SO prevalence was 3.8 %. However, using different methods to calculate the EWGSOP approach, prevalence for sarcopenia varied between 0.9 % and 6.0 %, the corresponding range for SO varied between 0.5 % and 4.1 %.


The prevalence of sarcopenia in this German cohort of communitydwelling caucasian men 70 years and older was slightly higher compared with European neighborhood countries that also applied the EWGSOP definition. Although we failed to detect comparable approaches to determine SO in caucasian cohorts this could be expected for SO too. Potentially this could be due to our rather cautious approach within the testing strategy. Indeed, the variation when applying different methods, cut-off points and testing strategy either prescribed or even not addressed by the EWGSOP was higher compared with the application of different Sarcopenia definitions than

  • Literatur

  • 1 Cruz-Jentoft AJ, Baeyens JP, Bauer JM. et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010; 39: 412-423.
  • 2 Batsis JA, Barre LK, Mackenzie TA. et al. Variation in the prevalence of sarcopenia and sarcopenic obesity in older adults associated with different research definitions: dual-energy X-ray absorptiometry data from the National Health and Nutrition Examination Survey 1999-2004. J Am Geriatr Soc 2013; 61: 974-980.
  • 3 Stenholm S, Harris TB, Rantanen T. et al. Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care 2008; 11: 693-700.
  • 4 Kemmler W, Teschler M, Weissenfels A. et al. Prevalence of Sarcopenia and Sarcopenic Obesity in community-dwelling German men 70+ using various established definitions. Osteo Int. 2017 online first.
  • 5 Kim H, Hirano H, Edahiro A. et al. Sarcopenia: Prevalence and associated factors based on different suggested definitions in community-dwelling older adults. Geriatr Gerontol Int 2016; 16 (Suppl. 01) 110-122.
  • 6 Peters DM, Fritz SL, Krotish DE. Assessing the reliability and validity of a shorter walk test compared with the 10-Meter Walk Test for measurements of gait speed in healthy, older adults. J Geriatr Phys Ther 2013; 36: 24-30.
  • 7 Delmonico MJ, Harris TB, Lee JS. et al. Alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. J Am Geriatr Soc 2007; 55: 769-774.
  • 8 Newman AB, Kupelian V, Visser M. et al. Sarcopenia: alternative definitions and associations with lower extremity function. J Am Geriatr Soc 2003; 51: 1602-1609.
  • 9 Baumgartner RN, Koehler KM, Gallagher D. et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 1998; 147: 755-763.
  • 10 Chien MY, Huang TY, Wu YT. Prevalence of sarcopenia estimated using a bioelectrical impedance analysis prediction equation in community-dwelling elderly people in Taiwan. J Am Geriatr Soc 2008; 56: 1710-1715.
  • 11 Janssen I, Baumgartner RN, Ross R. et al. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol 2004; 159: 413-421.
  • 12 Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc 2002; 50: 889-896.
  • 13 WHO. Obesity: Preventing and managing the global epidemic Genf. WHO. 2000
  • 14 Cauley JA. An Overview of Sarcopenic Obesity. J Clin Densitom 2015; 18: 499-505.
  • 15 McAuley E, Konopack JF, Motl RW. et al. Measuring disability and function in older women: psychometric properties of the late-life function and disability instrument. J Gerontol A Biol Sci Med Sci 2005; 60: 901-909.
  • 16 Kemmler W, Weineck J, Kalender WA, Engelke K. The effect of habitual physical activity, non-athletic exercise, muscle strength, and VO2max on bone mineral density is rather low in early postmenopausal osteopenic women. J Musculoskelet Neuronal Interact 2004; 04: 325-334.
  • 17 Clynes MA, Edwards MH, Buehring B. et al. Definitions of Sarcopenia: Associations with Previous Falls and Fracture in a Population Sample. Calcif Tissue Int 2015; 97: 445-452.
  • 18 Reijnierse EM, Trappenburg MC, Leter MJ. et al. The Impact of Different Diagnostic Criteria on the Prevalence of Sarcopenia in Healthy Elderly Participants and Geriatric Outpatients. Gerontology 2015; 61: 491-496.
  • 19 Kemmler W, Von Stengel S, Bebenek M. et al. Prevalence of Sarcopenic Obesity in Germany using Established Definitions. Baseline data of the FORMOsA Study. Osteo Int 2016; 27: 275-281.
  • 20 Fielding RA, Vellas B, Evans WJ. et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 2011; 12: 249-256.
  • 21 Studenski SA, Peters KW, Alley DE. et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 2014; 69: 547-558.
  • 22 Roberts HC, Denison HJ, Martin HJ. et al. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing 2011; 40: 423-429.
  • 23 Maggio M, Ceda GP, Ticinesi A. et al. Instrumental and Non-Instrumental Evaluation of 4-Meter Walking Speed in Older Individuals. PLoS One 2016; 11: e0153583.
  • 24 Middleton A, Fritz SL, Lusardi M. Walking speed: the functional vital sign. J Aging Phys Act 2015; 23: 314-322.
  • 25 Nascimento LR, Caetano LC, Freitas DC. et al. Different instructions during the ten-meter walking test determined significant increases in maximum gait speed in individuals with chronic hemiparesis. Rev Bras Fisioter 2012; 16: 122-127.
  • 26 Krzyminska-Siemaszko R, Czepulis N, Suwalska A. et al. The significance of body mass index in calculating the cut-off points for low muscle mass in the elderly: methodological issues. Biomed Res Int 2014; 2014: 450396.
  • 27 Masanes F, Culla A, Navarro-Gonzalez M. et al. Prevalence of sarcopenia in healthy communitydwelling elderly in an urban area of Barcelona (Spain). J Nutr Health Aging 2012; 16: 184-187.
  • 28 Pasco JA, Gould H, Brennan SL. et al. Musculoskeletal deterioration in men accompanies increases in body fat. Obesity (Silver Spring) 2014; 22: 863-867.
  • 29 DESTATIS. Statistisches Jahrbuch. 2015. Wiesbaden, Germany: Statistisches Bundesamt; 2015
  • 30 DESTATIS. Bildungsstand der Bevölkerung. Wiesbaden, Germany: Statistisches Bundesamt; 2015
  • 31 Rütten A, Abu-Omar K, Lampert T, Ziese T. Körperliche Aktivität (Physical Activity). Report. Berlin: Statistisches Bundesamt; 2005
  • 32 Ling CH, de Craen AJ, Slagboom PE. et al. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin Nutr 2011; 30: 610-615.
  • 33 von Stengel S, Kemmler W, Engelke K. Validität von BIA im Vergleich zur DXA bei der Erfassung der Körperzusammensetzung. Deutsche Zeitschrift für Sportmedizin 2013; 62: 200.
  • 34 Beaudart C, Reginster JY, Slomian J. et al. Estimation of sarcopenia prevalence using various assessment tools. Exp Gerontol 2015; 61: 31-37.
  • 35 Buckinx F, Reginster JY, Dardenne N. et al. Concordance between muscle mass assessed by bioelectrical impedance analysis and by dual energy X-ray absorptiometry: a cross-sectional study. BMC Musculoskelet Disord 2015; 16: 60.
  • 36 Lauretani F, Russo CR, Bandinelli S. et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol 2003; 95: 1851-1860.
  • 37 Fried LP, Tangen CM, Walston J. et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001; 56: M146-156.
  • 38 Cesari M, Kritchevsky SB, Newman AB. et al. Added value of physical performance measures in predicting adverse health-related events: results from the Health, Aging And Body Composition Study. J Am Geriatr Soc 2009; 57: 251-259.
  • 39 Abellan van Kan G, Rolland Y, Andrieu S. et al. Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force. J Nutr Health Aging 2009; 13: 881-889.