Tierarztl Prax Ausg K Kleintiere Heimtiere 2008; 36(01): 12-18
DOI: 10.1055/s-0038-1622654
Schattauer GmbH

Intraoperative und postoperative Schmerzerkennung und-überwachung

Intraoperative and postoperative pain assessment and analgesic treatment
K. A. Otto
1   Institut für Versuchstierkunde und Zentrales Tierlabor (Direktor: Prof. Dr. med. vet. H. J. Hedrich) der Medizinischen Hochschule Hannover
› Author Affiliations
Further Information

Publication History

Eingegangen:15 January 2007

akzeptiert:14 August 2007

Publication Date:
05 January 2018 (online)


Chirurgische Manipulationen führen, in Abhängigkeit von der Narkosetiefe, zu einer Vielzahl von nozizeptiven Reaktionen, die auf spinaler, supraspinaler und zerebrokortikaler Ebene ausgelöst werden. Grundsätzlich kann angenommen werden, dass mit zunehmender Narkosetiefe zuerst die somatosensorischen Reaktionen erlöschen, gefolgt von somatomotorischen und respiratorischen Reaktionen. Höhere Anästhetikakonzentrationen sind für die Unterdrückung hämodynamischer Reaktionen erforderlich, während sich autonome hormonelle Reaktionen mitunter erst durch zusätzliche Nervenblockaden mit einem Lokalanästhetikum unterbinden lassen. Diese Erkenntnis lässt die Schlussfolgerung zu, dass ein Tier, das während der chirurgischen Manipulationen keine motorischen Reaktionen zeigt, bewusstlos ist und demzufolge kein Schmerzempfinden besitzt. Zudem liefert ein stabiles EEG intraoperativ den Hinweis, dass die Impulsfortleitung im Zentralnervensystem durch die Anästhesie unterbrochen ist und damit wesentliche Voraussetzungen für die bewusste Wahrnehmung des Schmerzreizes fehlen. Aufgrund des Fehlens der verbalen Schmerzmitteilung sind für die postoperative Schmerzerkennung und -bewertung primär die Beurteilung der äußeren Erscheinung, des spontanen und des provozierten Verhaltens und der Effekt einer Schmerztherapie von Bedeutung. Die postoperative Schmerzüberwachung kann durch die Verwendung definierter Schmerzbewertungssysteme (numerische Bewertungstabellen [NRS], visuelle Analogskala [VAS]) standardisiert werden.


Depending on anaesthetic depth surgical stimulation may elicit a number of nociceptive responses at spinal, supraspinal and cerebrocortical levels. These responses are suppressed by general anaesthetics in a dose-dependent manner and in the following order: somatic sensory responses, somatic motor responses, autonomic respiratory responses, autonomic haemodynamic responses and finally autonomic hormonal responses, which may require an additional local anaesthetic nerve block for total suppression. This rank order implies that animals which do not move in response to a noxious stimulus are unconscious and hence unable to perceive pain. In addition, intraoperative recording of a stable EEG pattern not affected by surgical stimulation could be used as an indication that transmission of nerve impulses has been interrupted by anaesthesia, thereby rendering the animal unable to perceive pain. Because of the lack of verbal communication postoperative pain assessment is primarily based on the evaluation of the animal’s appearance, spontaneous behaviour, provoked behaviour, and response to analgesic treatment. The intensity of postoperative pain may be assessed by means of numerical rating scales or a visual analogue scale.

  • Literatur

  • 1 Al-Gizawiy MM, Rudé EP. Comparison of preoperative carprofen and postoperative butorphanol as postsurgical analgesics in cats undergoing ovariohysterectomy. Vet Anaesth Analg 2004; 31: 164-174.
  • 2 Angel A. Central neuronal pathways and the process of anaesthesia. Br J Anaesth 1993; 71: 148-163.
  • 3 Antognini JF, Berg K. Cardiovascular responses to noxious stimuli during isoflurane anesthesia are minimally affected by anesthetic action in the brain. Anesth Analg 1995; 81: 843-848.
  • 4 Antognini JF, Carstens E. Isoflurane blunts electroencephalographic and thalamic- recticular formation responses to noxious stimulation in goats. Anesthesiology 1999; 91: 1770-1779.
  • 5 Antognini JF, Wang XW. Isoflurane indirectly depresses middle latency auditory evoked potentials by action in the spinal cord in the goat. Can J Anesth 1999; 46: 692-695.
  • 6 Arndt VM, Hofmockel R, Benad G. EEG-Veränderungen unter Propofol- Alfentanil-Lachgas-Narkose. Anaesthesiol Reanim 1995; 20: 126-133.
  • 7 Berg-Johnsen J, Langmoen IA. Isoflurane hyperpolarizes neurones in rat and human cerebral cortex. Acta Physiol Scand 1987; 130: 679-685.
  • 8 Bischoff P, Kochs E, Droese D, Meyer-Moldenhauer WH, Schulte am Esch J. Topographisch-quantitative EEG-Analyse der paradoxen Arousalreaktion. EEG-Veränderungen bei urologischen Eingriffen unter Isofluran-/N2O-Narkose. Anaesthesist 1993; 42: 142-148.
  • 9 Bonica JJ. ed. The management of pain. 2nd ed.. Vol. 1 Philadelphia: Lea and Febiger; 1990
  • 10 Breazile JE, Kitchell RL. Pain perception in animals. Fed Proc 1969; 28: 1379-1382.
  • 11 Chortkoff BS, Gonsowski CT, Bennett HL, Levinson B, Crankshaw DP, Dutton RC, Ionescu P, Block RJ, Eger EL II. Subanesthetic concentrations of desflurane and propofol that suppress recall of emotionally charged information. Anesth Analg 1995; 81: 728-736.
  • 12 Chortkoff BS, Eger EL II, Crankshaw DP, Gonsowski CT, Dutton RC, Ionescu P. Concentrations of desflurane and propofol that suppress response to command in humans. Anesth Analg 1995; 81: 737-743.
  • 13 Conzemius MG, Hill CM, Sammarco JL, Perkowski SZ. Correlation between subjective and objective measures used to determine severity of postoperative pain in dogs. J Am Vet Med Assoc 1997; 210: 1619-1622.
  • 14 De Beer NAM, van Hooff JC, Cluitmans PJM Korsten HHM, Grouls RJE. Haemodynamic response to incision and sternotomy in relation to auditory evoked potential and spontaneous EEG. Br J Anaesth 1996; 76: 685-693.
  • 15 De Jong RH, Eger EI II. MAC expanded: AD50 and AD95 values of common inhalation anesthetics in man. Anesthesiology 1975; 42: 408-419.
  • 16 Ebe M, Homma I. Leitfaden für die EEG-Praxis. Ein Bildkompendium Stuttgart: Fischer; 1992
  • 17 Eger EI II. Anesthetic uptake and action. Baltimore: Williams and Wilkins; 1974
  • 18 Eger EI II, Saidman LJ, Brandstater B. Minimum alveolar concentration: A standard of anesthetic potency. Anesthesiology 1965; 26: 756-763.
  • 19 Haga HA, Tevik A, Moerch H. Electroencephalographic and cardiovascular indicators of nociception during isoflurane anaesthesia in pigs. Vet Anaesth Analg 2001; 28: 126-131.
  • 20 Hall LW. Postoperative pain control in hospitalized and out-patient animals. In: Animal Pain Short CE, Van Poznak A. eds New York: Churchill Livingstone; 1992: 353-357.
  • 21 Hellyer PW, Gaynor JS. Acute postsurgical pain in dogs and cats. Compend Contin Educ Small Anim 1998; 20: 140-153.
  • 22 Hjortsø N-C. Christensen NJ, Andersen T, Kehlet H. Effects of the extradural administration of local anaesthetic agents and morphine on the urinary excretion of cortisol, catecholamines and nitrogen following abdominal surgery. Br J Anaesth 1985; 57: 400-406.
  • 23 Holton LL, Scott EM, Nolan AM, Reid J, Welsh E, Flaherty D. Comparison of three methods used for assessment of pain in dogs. J Am Vet Med Assoc 1998; 212: 61-66.
  • 24 Inada T, Shingu K, Nakao S, Hirose T, Nagata A. Electroencephalographic arousal response during tracheal intubation and laryngeal mask airway insertion after induction of anaesthesia with propofol. Anaesthesia 1999; 54: 1150-1154.
  • 25 John ER, Prichep LS. The anesthetic cascade. A theory of how anesthesia suppresses consciousness. Anesthesiology 2005; 102: 447-471.
  • 26 Kaada BR, Thomas F, Alnaes E, Wester K. EEG synchronization induced by high frequency midbrain reticular stimulation in anesthetized cats. Electroencephalogr Clin Neurophysiol 1967; 22: 220-230.
  • 27 Kehlet H. Surgical stress: the role of pain and analgesia. Br J Anaesth 1989; 63: 189-195.
  • 28 Kiersey DK, Bickford RG, Faulconer Jr A . Electroencephalographic patterns produced by thiopental sodium during surgical operations: Description and classification. Br J Anaesth 1951; 23: 141-152.
  • 29 Kochs E, Bischoff P, Pichlmeier U, Schulte am Esch J. Surgical stimulation induces changes in brain electrical activity during isoflurane/nitrous oxide anesthesia. A topographic electroencephalographic analysis. Anesthesiology 1994; 80: 1026-1034.
  • 30 Larson MD, Sessler DI, Washington DE, Merrifield BR, Hynson JA, McGuire J. Pupillary response to noxious stimulation during isoflurane and propofol anesthesia. Anesth Analg 1993; 76: 1072-1078.
  • 31 Larson MD, Berry PD, May J, Bjorksten A, Sessler DI. Latency of pupillary reflex dilation during general anesthesia. J Appl Physiol 2004; 97: 725-730.
  • 32 Leslie K, Sessler DI, Smith W, Larson M, Ozaki M, Blanchard D, Crankshaw DP. Prediction of movement during propofol/nitrous oxide anesthesia: Performance of concentration, electroencephalographic, pupillary, and hemodynamic indicators. Anesthesiology 1996; 84: 52-63.
  • 33 Livingston A. Neurologic conformation of the clinical signs of effective control or prevention of animal painbkIbk Animal Pain and its Control. Post Graduate Committee in Veterinary Science, University of Sydney. ed Proceedings 1994; 226: 241-246.
  • 34 Mashimo T, Zhang P, Kamibayashi T, Inagaki Y, Ohara A, Yamatodani A, Yoshiya I. Laser doppler skin blood flow and sympathetic nervous responses to surgical skin incision during halothane and isoflurane anesthesia. Anesth Analg 1997; 85: 291-298.
  • 35 Mi W-D. Sakai T, Takahashi S, Matsuki A. Haemodynamic and electroencephalographic responses to intubation during induction with propofol or propofol/ fentanyl. Can J Anaesth 1998; 45: 19-22.
  • 36 Møller IW, Dinesen K, Søndergård S, Knigge U, Kehlet H. Effect of patientcontrolled analgesia on plasma catecholamine, cortisol and glucose concentrations after cholecystectomy. Br J Anaesth 1988; 61: 160-164.
  • 37 Morton DB, Griffiths PHM. Guidelines on the recognition of pain, distress and discomfort in experimental animals and an hypothesis for assessment. Vet Rec 1985; 116: 431-436.
  • 38 Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1949; 1: 455-473.
  • 39 Nakayama M, Kanaya N, Edanaga M, Namiki A. Hemodynamic and bispectral index responses to tracheal intubation during isoflurane or sevoflurane anesthesia. J Anesth 2003; 17: 223-226.
  • 40 Newberg LA, Milde JH, Michenfelder MD. The cerebral metabolic effects of isoflurane at and above concentrations that suppress cortical electrical activity. Anesthesiology 1983; 59: 23-28.
  • 41 Oshima E, Shingu K, Mori K. EEG activity during halothane anaesthesia in man. Br J Anaesth 1981; 53: 65-72.
  • 42 Otto K. Schmerztherapie bei Klein-, Heim- und Versuchstieren. Berlin: Parey: 2001
  • 43 Otto KA, Gerich T, Volmert C. Hemodynamic and electroencephalographic effects of epidural buprenorphine during orthopedic hindlimb surgery in sheep: A comparison with intramuscular buprenorphine and epidural saline. J Exp Anim Sci 2000; 41: 121-132.
  • 44 Otto KA, Mally P. Noxious stimulation during orthopaedic surgery results in EEG “arousal” or “paradoxical arousal” reaction in isoflurane-anaesthetised sheep. Res Vet Sci 2003; 75: 103-112.
  • 45 Pennefather SH, Dark JH, Bullock RE. Haemodynamic responses to surgery in brain-dead organ donors. Anaesthesia 1993; 48: 1034-1038.
  • 46 Prys-Roberts C. Anaesthesia: A practical or impossible construct? (editorial). Br J Anaesth 1987; 59: 1341-1345.
  • 47 Rampil IJ. A primer for EEG signal processing in anesthesia. Anesthesiology 1998; 89: 980-1002.
  • 48 Rampil IJ, Laster MJ. No correlation between quantitative electroencephalographic measurements and movement response to noxious stimuli during isoflurane anesthesia in rats. Anesthesiology 1992; 77: 920-925.
  • 49 Rampil IJ, Mason P, Singh H. Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology 1993; 78: 707-712.
  • 50 Röpcke H, Rehberg B, Koenen-Bergmann M, Bouillon T, Bruhn J, Hoeft A. Surgical stimulation shifts EEG concentration-response relationship of desflurane. Anesthesiology 2001; 94: 390-399.
  • 51 Roizen MF, Horrigan RW, Frazer BM. Anesthetic doses blocking adrenergic (stress) and cardiovascular responses to incision – MAC BAR. Anesthesiology 1981; 54: 390-398.
  • 52 Sandin RH, Enlund G, Samuelsson P, Lennmarken C. Awareness during anaesthesia: a prospective case study. Lancet 2000; 355: 707-711.
  • 53 Schwender D, Daunderer M, Mulzer S, Klasing S, Finsterer U, Peter K. Spectral edge frequency of the electroencephalogram to monitor “depth” of anaesthesia with isoflurane or propofol. Br J Anaesth 1996; 77: 179-184.
  • 54 Shapiro HM. Anesthesia effects upon cerebral blood flow, cerebral metabolism, electroencephalogram, and evoked potential. In: Anesthesia 2nd ed.. Miller RD. ed New York: Churchill Livingstone; 1986: 1249-1288.
  • 55 Stanski DR, Vuyk J, Ausems M, Arts R, Kramer C, Spierdijk J. Can the EEG be used to monitor anesthetic depth for alfentanil with N2O?. Anesthesiology 1987; 67: A401
  • 56 Steffey EP. Concepts of general anesthesia and assessment of adequacy of anesthesia for animal surgery. In: Animal Pain Kitchell RL, Erickson HH. eds Bethesda, Md: American Physiological Society; 1983: 133-150.
  • 57 Steriade M. Arousal: Revisiting the recticular activating system. Science 1996; 272: 225-226.
  • 58 Taylor PM. Equine stress responses to anaesthesia. Br J Anaesth 1989; 63: 702-709.
  • 59 Taylor PM, Walsh CM. Does buprenorphine premedication affect the action of fentanyl during surgery in dogs?. Vet Anaesth Analg 2003; 30: 55
  • 60 Waldvogel HH. Hrsg. Analgetika, Antinozizeptiva, Adjuvanzien. Handbuch für die Schmerzpraxis Berlin, Heidelberg: Springer; 1996
  • 61 Weissman C. The metabolic response to stress: An overview and update. Anesthesiology 1990; 73: 308-327.
  • 62 Woolf CJ. Generation of acute pain: central mechanisms. Br Med Bull 1991; 47: 523-533.