Tierarztl Prax Ausg K Kleintiere Heimtiere 2014; 42(01): 13-19
DOI: 10.1055/s-0038-1623741
Original Article
Schattauer GmbH

Comparison of auricular and rectal temperature measurement in normothermic, hypothermic, and hyperthermic dogs

Vergleich zwischen aurikularer und rektaler Temperaturmessung bei normothermen, hypothermen und hyperthermen Hunden
U. Konietschke
1   Small Animal Clinic Haar, Haar, Germany
,
B. D. Kruse
1   Small Animal Clinic Haar, Haar, Germany
,
R. Müller
2   Clinic of Small Animal Medicine, Department of Veterinary Medicine, University of Munich, Munich, Germany
,
C. Stockhaus
1   Small Animal Clinic Haar, Haar, Germany
,
K. Hartmann
2   Clinic of Small Animal Medicine, Department of Veterinary Medicine, University of Munich, Munich, Germany
,
A. Wehner
2   Clinic of Small Animal Medicine, Department of Veterinary Medicine, University of Munich, Munich, Germany
› Author Affiliations
Further Information

Publication History

Received: 13 January 2013

Accepted after revision: 07 May 2013

Publication Date:
07 January 2018 (online)

Summary

Objective: Measurement of rectal temperature is the most common method and considered gold standard for obtaining body temperature in dogs. So far, no study has been performed comparing agreement between rectal and auricular measurements in a large case series. The purpose of the study was to assess agreement between rectal and auricular temperature measurement in normothermic, hypothermic, and hyperthermic dogs with consideration of different environmental conditions and ear conformations. Materials and methods: Reference values for both methods were established using 62 healthy dogs. Three hundred dogs with various diseases (220 normothermic, 32 hypothermic, 48 hyperthermic) were enrolled in this prospective study. Rectal temperature was compared to auricular temperature and differences in agreement with regard to environmental temperature, relative humidity, and different ear conformations (pendulous versus prick ears) were evaluated using Pearson’s correlation coefficient and Bland-Altman analysis. Results: Correlation between rectal and auricular temperature was significant (r: 0.892; p < 0.01). However, Bland-Altman plots showed an inacceptable variation of values (bias: 0.300 °C; limits of agreement: –0.606 to 1.206 °C). This variation was above a maximal clinical tolerance of 0.3 °C, which was established by experts’ opinion (n = 16). Relative humidity had a significant influence (p = 0.001), whereas environmental temperature did not. Conclusion: Variation between the two methods of measuring body temperature was clinically unacceptable. Clinical relevance: Although measurement of auricular temperature is fast, simple, and well tolerated, this method provides a clinically unacceptable difference to the rectal measurement.

Zusammenfassung

Gegenstand und Ziel: Die rektale Temperaturmessung stellt die häufigste Methode zur Bestimmung der Körpertemperatur bei Hunden dar und gilt als Goldstandard. Bisher gibt es keine Studien, welche die Korrelation zwischen rektaler und aurikularer Messung bei einer großen Fallzahl untersuchten. Ziel dieser Studie war, die Übereinstimmung zwischen rektaler und aurikularer Temperaturmessung bei normo-, hypound hyperthermen Hunden unter Berücksichtigung verschiedener Umgebungsbedingungen und der Ohrkonformation zu evaluieren. Material und Methoden: Für beide Methoden wurden anhand von 62 gesunden Hunden Referenzwerte erstellt. In die prospektive Studie gingen insgesamt 300 Hunde (220 normotherm, 32 hypotherm, 48 hypertherm) ein. Die beim Vergleich zwischen Rektalund Ohrtemperatur ermittelten Unterschiede wurden im Hinblick auf Umgebungstemperatur, relative Luftfeuchte und Ohrkonformation (Hängeversus Stehohren) mittels des Korrelationskoeffizienten nach Pearson und der Bland-Altman-Analyse evaluiert. Ergebnisse: Die Korrelation zwischen rektaler und aurikularer Messung war signifikant (r: 0,892; p < 0,01). Dennoch zeigte sich in den Bland-Altman-Plots eine inakzeptable Streuung der Messwertdifferenzen (Streuung: 0,300 °C; Übereinstimmungsgrenzen: –0,606 bis 1,206 °C). Diese Streuung lag über einem klinisch maximal tolerierbaren Wert von 0,3 °C, der anhand von Expertenmeinungen (n = 16) ermittelt wurde. Die Luftfeuchte hatte einen signifikanten Einfluss (p = 0,001), die Umgebungs temperatur nicht. Schlussfolgerung: Die Unterschiede zwischen rektaler und aurikularer Temperaturmessung waren klinisch nicht akzeptabel. Klinische Relevanz: Obwohl die Messung der Ohrtemperatur bei Hunden eine schnelle, einfache und gut tolerierte Methode darstellt, liefert sie unter klinischen Aspekten eine inakzeptable Differenz gegenüber der rektalen Temperaturmessung.

 
  • References

  • 1 Bland J, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 01: 307-310.
  • 2 Brinnel H, Cabanac M. Tympanic temperature is a core temperature in humans. J Therm Biol 1988; 14 (01) 47-53.
  • 3 Craig JV, Lancaster GA, Taylor S, Williamson PR, Smyth RL. Infrared ear thermometry compared with rectal thermometry in children: a systematic review. Lancet 2002; 360 9333 603-609.
  • 4 Dodd SR, Lancaster GA, Craig JV, Smyth RL, Williamson PR. In a systematic review, infrared ear thermometry for fever diagnosis in children finds poor sensitivity. J Clin Epidemiol 2006; 59 (04) 354-357.
  • 5 Fraden J. The development of thermoscan instant thermometer. Clin Pediatr 1991; 30 (04) 11-12.
  • 6 Garner S. Ear versus rectal temperature in dogs and cats. Vet Rec 2011; 168 (09) 248.
  • 7 González AM, Mann FA, Preziosi DE, Meadows RL, Wagner-Mann CC. Measurement of body temperature by use of auricular thermometers versus rectal thermometers in dogs with otitis externa. J Am Vet Med Assoc 2002; 221 (03) 378-380.
  • 8 Goodwin SD. Comparison of body temperatures of goats, horses, and sheep measured with a tympanic infrared thermometer, an implantable microchip transponder, and a rectal thermometer. Contemp Top Lab Anim Sci 1998; 37 (03) 51-55.
  • 9 Greenes DS, Fleisher GR. When body temperature changes, does rectal temperature lag?. J Pediatr 2004; 144 06: 824-826.
  • 10 Greer RJ, Cohn LA, Dodam JR, Wagner-Mann CC, Mann FA. Comparison of three methods of temperature measurement in hypothermic, euthermic, and hyperthermic dogs. J Am Vet Med Assoc 2007; 230 (12) 1841-1848.
  • 11 Huang HP, Shih HM. Use of infrared thermometry and effect of otitis externa on external ear canal temperature in dogs. J Am Vet Med Assoc 1998; 213 (01) 76-79.
  • 12 Huang HP, Huang HM. Effects of ear type, sex, age, body weight, and climate on temperatures in the external acoustic meatus of dogs. Am J Vet Res 1999; 60 (09) 1173-1176.
  • 13 Kunkle GA, Nicklin CF, Sullivan-Tamboe DL. Comparison of body temperature in cats using a veterinary infrared thermometer and a digital rectal thermometer. J Am Anim Hosp Assoc 2004; 40 (01) 42-46.
  • 14 Miller JB. Hyperthermia and fever of unknown origin. In: Textbook of Veterinary Internal Medicine. Diseases of the Dog and the Cat. Ettinger SJ, Feldman EC. eds. St. Louis: Saunders Elsevier; 2010: 41-45.
  • 15 Purssell E, While A, Coomber B. Tympanic thermometry - normal temperature and reliability. Paediatr Nurs 2009; 21 (06) 40-43.
  • 16 Sousa MG, Carareto R, Pereira-Junior VA, Aquino MCC. Comparison between auricular and standard rectal thermometers for the measurement of body temperature in dogs. Can Vet J 2011; 52 (04) 403-406.
  • 17 Southward ES, Mann FA, Dodam J, Wagner-Mann CC. A comparison of auricular, rectal and pulmonary artery thermometry in dogs with anesthesia-induced hypothermia. J Vet Emerg Crit Care 2006; 16 (03) 172-175.
  • 18 Stiftung Warentest. Fieberthermometer. 2005 01. 86-90.
  • 19 Taylor PM. Hypothermia. In: Textbook of Veterinary Internal Medicine. Diseases of the Dog and the Cat. Ettinger SJ, Feldman EC. eds. St. Louis: Saunders Elsevier; 2010: 46-47.